

AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping

MOSES Pilot Demonstration 3 Evaluation Report

Document Identification			
Status	Final	Due Date	30 November 2023
Version	1.0	Submission Date	07/12/2023
Related WP	WP3, WP7	Document Reference	D.7.4
Related Deliverable(s)	D3.3, D3.4, D3.5, D7.1	Dissemination Level	СО
Lead Participant	MCGR	Document Type:	R/DEM
Contributors	TNO, CTECSWE	Lead Author	Jonas Renlund / Janne Suominen
		Reviewers	Ignacio Benítez (VPF)
			Jason Whitehouse (TRELL)

Document Information

List of Contributors		
First Name	Last Name	Partner
Jonas	Renlund	MCGR
Janne	Suominen	MCGR
Christian	Nordin	MCGR
Stefan	Hellgren	MCGR
Frank B.	ter Haar	TNO
Bastian	van Manen	TNO
Tom	Hueting	TNO
Hans	van den Broek	TNO

Document History			
Version	Date	Change editors	Changes
0.1	29/09/2023	Frank B. ter Haar	Pilot tests 1.06, 1.07, 1.08
0.2	10-10/2023	Jonas Renlund	Equipment and minor corrections
0.3	14/10/2023	Janne Suominen Hans van den Broek	Introduction, Conclusion
0.4	14/10/2023	Christian Nordin Stephan Hellgren	Pilot tests 1.01, 1.02, 1.03, 1.04, 1.05
0.5	28/10/2023	Tom Hueting, Bastian van Manen Frank B. ter Haar	Pilot tests 1.08, 2.01, 2.02, 3.01
0.6	01/11/2023	MCGR, TNO, Bromma	First draft version ready
0.7	02/11/2023	Frank B. ter Haar	Review on tests 1.06 – 3.01, addition of Demonstration day content, conclusions, and references
0.8	02/11/2023	Internal review per partner ready	Final draft version ready
0.9	03/11/2023	Lead Author edits	Final draft version ready
0.95	27/11/2023	Reviewer comments incorporated	Final version ready
1.0	1/12/2023	Lead Author	Final version to be submitted

Quality Control		
Role	Who (Partner short name)	Approval Date
Deliverable leader	Janne Suominen (MCGR)	01/12/2023
Quality manager	Konstantinos Louzis (NTUA)	7/12/2023
Project Coordinator	Konstantinos Louzis (NTUA)	7/12/2023

Ex	ecutiv	e Summary11
1.	Intro	oduction12
	1.1	Purpose of the document
	1.2	Intended readership
	1.3	Document Structure
2.	Pilo	t test setup13
	2.1	Testing Scenarios & Methodology13
	2.1.1	MacGregor Test facility in Örnsköldsvik15
	2.1.2	TNO Test site in Soesterberg16
	2.1.3	Pilot class TC-RCHS-1: Container handling under normal operational conditions 17
	2.1.4	Pilot class TC-RCHS-2: Detecting and addressing safety critical situations 19
	2.1.5	Pilot class TC-RCHS-3: Dealing with fault conditions
	2.2	Test equipment at MacGregor Test facility20
	2.2.1	Test Crane
	2.2.2	Robotic crane
	2.2.3	Data logging23
	2.2.4	Test Cabin
	2.2.5	5 Swing Defeater
	2.2.6	Crane Network25
	2.2.7	Active Rotation Control
	2.2.8	26 C-how
	2.2.9	9 Spreader
	2.3	Test equipment at TNO Immersive Collaboration Lab facility
	2.3.1	The 3D world interpreter
	2.3.2	2 IOSS
3.	Pilo	t test results
	3.1	Test TC-RCHS-1.01 - Moving two containers from quay to vessel
	3.1.1	Definitions
	3.1.2	Result
	3.1.3	Conclusions
	3.2	Test TC-RCHS-1.02 - Discharging one container and loading one container
	3.2.1	Definitions
	322	Result 38

MOSES Pilot Demonstration 3 Evaluation Report

3.2.3	Conclusions
3.3 1	est TC-RCHS-1.03 - Discharging between two containers on quayside
3.3.1	Definitions
3.3.2	Result43
3.3.3	Conclusions45
3.4 1	Test TC-RCHS-1.04 - Detecting misaligned containers and loading to vessel46
3.4.1	Definitions47
3.4.2	Results
3.4.3	Conclusions
3.5 1	Fest TC-RCHS-1.05 – Verifying container properties 49
3.5.1	Definitions
3.5.2	Results
3.5.3	Conclusions53
3.6 1	Fest TC-RCHS-1.06 – Scanning port53
3.6.1	Scenario Description
3.6.2	Results
3.6.3	Conclusions60
3.7 1	est TC-RCHS-1.07 – Scanning containers60
3.7.1	Scenario Description60
3.7.2	Results62
3.7.3	Conclusions
3.8 1	est TC-RCHS-1.08 – Object detection68
3.8.1	Scenario Description
3.8.2	Results70
3.8.3	Conclusions74
3.9 1	est TC-RCHS-2.01 – Threat detection75
3.9.1	Scenario Description75
3.9.2	Results75
3.9.3	Conclusions79
3.10	est TC-RCHS-2.02 – Emergency stop79
3.10.1	Scenario Description80
3.10.2	Results
3.10.3	Conclusions
3.11 1	est TC-RCHS-3.01 – Incorrect container ID

3.1	1.1 Scenario Description	88
3.1	1.2 Results	
3.1	1.3 Conclusions	92
4. De	monstration day	93
4.1	Agenda of the demonstration day	93
4.2	Photo collage of the live demonstration	94
5. Co	nclusions	98
5.1	Rubric table	
5.2	Subsystems and their lessons learned	
5.2	.1 Robotic container handling system	
5.2	.2 Vision system & Shore Control Center	
5.2	.3 New spreader technology	
5.3	Future work	
Refere	nces	106
Annex	1: Performance Indicators	107
Annex	2: Success indicators	

List of Tables

Table 1: The test scenarios needed to validate Pilot 3 KPIs are organized in three categories.	
	3
Table 2: Overview of the test scenarios designed per test case category and indication of the	j
performance indicators tested1	4
Table 3: Test cases – summary	4
Table 4: Description of test scenario TC-RCH-1.01: Moving 2 containers from quay to vessel 3	5
Table 5: TC-RCH-1.01 #1	6
Table 6: TC-RCH-1.01 #2	6
Table 7: Description of test scenario TC-RCH-1.02: Discharging one container and loading on	e
container	7
Table 8: TC-RCH-1.02 Auto	8
Table 9: TC-RCH-1.02 Man	9
Table 10: TC-RCH-1.03: Discharging between two containers on quayside	1
Table 11: TC-RCH-1.03 Error at Low wind condition	3
Table 12: TC-RCH-1.03 Error at High wind condition	3
Table 13: TC-RCH-1.04: detecting "misaligned" containers and loading to vessel	6
Table 14: TC-RCH-1.04 Pick up with Lock On Target	8
Table 15: TC-RCH-1.04 Pick-up time when misaligned container4	8
Table 16: TC-RCH-1.04 Pick-up time when NOT misaligned container	8
Table 17: Description of test scenario TC-RCH-1.05: verifying container properties	9
Table 18: TC-RCH-1.05 Summarized of the data captured in the crane control5	2
Table 19: Description of TC-RCHS-1.06 – Scanning Port5	3
Table 20: Scanning port results5	9
Table 21: Description of test scenario TC-RCH-1.07 - Scanning containers	0
Table 22: Container position offsets measured by hand after placing each container. These	
offsets represent the container placement errors of the CCU and spreader	5
Table 23: Container positions offsets resulting from the 3DWI container analysis as well as	
the relative error in the 3DWI analysis compared to the hand-measured container offsets. 6	5
Table 24: Performance of 3DWI static object analysis. 6	8
Table 25: Description of test scenario TC-RCH-1.08 - object detection	9
Table 26: Error in the 3D position estimate of the 3DWI for all three persons at different	
RPM speeds and position configurations7	1
Table 27: Description of TC-RCHS-2.01- Threat detection and mitigation. 7	5
Table 28: Object locations per slewing scan. 7	6
Table 29: Number of obstacles detected7	8
Table 30: Description of TC-RCHS-2.02- Emergency stop. 8	0
Table 31: Emergency stop test 1 and 2 evaluation results. 8	5
Table 32: Description of TC-RCHS-3.01 – Incorrect container ID. 8	8
Table 33: Overview of Pilot 3 KPIs related to Robotic Container Handing innovation 10	7
Table 34: Overview of the success indicators linked to pilot 3 innovation. 10	8

List of Figures

Figure 1: Test facility in Örnsköldsvik	. 15
Figure 2: Overview of the MacGregor test site with highlighted operational area of the cra	ne.
	. 15
Figure 3: Highlighted areas on the test site representing the imaginary feeder vessel (blue)
and the quay (yellow)	. 16
Figure 4: View of the experimental shore control set-up at the immersive collaboration lal	b
facility at the TNO location at Soesterberg, The Netherlands. In the back the front-end of	
IOSS is projected.	.16
Figure 5: Illustration of the RCHS onboard a feeder vessel. The logical positions on the qua	iy
and onboard the vessel, are highlighted (green)	. 17
Figure 6: Illustration of the test site where the logical positions are shown	. 18
Figure 7: Test facility in Örnsköldsvik	. 20
Figure 8: Dimensions and Technical data of the GLE test crane	.21
Figure 9: Major added parts for the robotic functionality.	. 22
Figure 10: CCU cabinet on the left (middle) and mounted sensor suite on the right	. 22
Figure 11: Test Cabin	.24
Figure 12: LIDAR for anti-pendulation control	.24
Figure 13: Communication networks in the robotic crane	. 25
Figure 14: An ARC on the left and right Power swivels that rotates the container	. 25
Figure 15: Delayed test period	. 26
Figure 16: C-how (hardware in the loop)	. 27
Figure 17: Bromma spreader	. 28
Figure 18: Bromma spreader with added cameras	. 29
Figure 19: Side view camera on foldable arm	. 29
Figure 20: Bromma spreader	. 30
Figure 21: Impression of the experimental shore control set-up at the Immersive	
Collaboration Lab (ICL) facility at the TNO location at Soesterberg, The Netherlands. In the	<u>;</u>
back the front-end of IOSS is projected.	. 31
Figure 22: Overview of TNO's Immersive Collaboration Lab (ICL) facility at Soesterberg, Th	e
Netherlands	.31
Figure 23: IOSS data exchange architecture.	. 32
Figure 24: An overview of the three interface layers for the operator. This follows the desi	ign
pattern of progressively disclosing more information and allowing more complex control	
actions	. 33
Figure 25: Start positions of the containers in test TC-RCHS-1.01	. 35
Figure 26: Start positions of the containers in test TC-RCHS-1.02	. 37
Figure 27: Top view Autonomous drive	. 39
Figure 28: Top view manual drive	. 40
Figure 29: Start positions of the containers in test TC-RCHS-1.03	.41
Figure 30: Top view of a container for error measurements	. 42
Figure 31: Illustration of the formulae variables A, B, N, L and W	. 43
Figure 32: TC-RCH-1.03 Different wind conditions.	.44

Figure 33: TC-RCH-1.03 Misalignment from all the measured containers	45
Figure 34: Start positions of the containers in test TC-RCHS-1.04	46
Figure 35: Lock on target, OK and not found	47
Figure 36: Centre of Mass	50
Figure 37: Fore/aft direction definition	51
Figure 38: Side view camera showing ID and door side	51
Figure 39: Visualization of test scenario TC-RCH-1.06: Scanning Port.	53
Figure 40: Slewing RPM over time for the six scans. The graphs show a valley when the crai	ne
moves to the right and a peak when it moves to the left. With an increasing RPM, the valle	ys
are lower, the peaks are higher, and the total scan duration decreases. The zig-zags show t	the
crane's anti-pendulation in action.	55
Figure 41: Satellite view from Google Maps with distance measurements of the test area in	۱
Sweden, which is 40.3 x 53.0 meter	56
Figure 42: Shipping container measurement on test area using Google Maps	57
Figure 43: 3D world scan created by merging the LiDAR data during the scanning movemer	٦t
of crane. The more 3D points per square meter, the higher the point density in the point	
cloud	58
Figure 44: Five successive frames from the sensor suite on the crane taken at 0.2 and 0.75	
RPM to inspect potential motion blur	58
Figure 45: Close up look on pixel level scale of a marking located on the blue shipping	
container when slewing at 0.2 (top) and 0.75 RPM (bottom) to visually inspect motion blur	·59
Figure 46: Example container configuration A for TC-RCH-1.07: Scanning containers	61
Figure 47: Example container configuration A for TC-RCH-1.07: Scanning containers	61
Figure 48: Corner markings to measure the container position accuracy before analyzing the	ıe
3DWI container detection precision. Container slots are 0.5m larger on each side of the	
container	63
Figure 49: Schematic drawing (top view) of a container positioned in a container slot with	
error measurements.	63
Figure 50: 3D world point cloud created after a full scan of the test area (top) and the	
resulting container mask (bottom left) with the segmented 2D container bounding boxes	
(bottom right)	64
Figure 51: Slewing angle and slewing RPM over the time for container scan 3	66
Figure 52: DEM and resulting mask of the segmented static objects for scan 1	67
Figure 53: Visualization of TC-RCH-1.08. Obstacle locations within operational area, vessel	
side (left), quay side (right). Person 1 position options 4,5 and 6. Person 2 position options	
7,8,9. Person 3 position options 1,2 and 3.	69
Figure 54: Slewing RPM over time for one 0.2 RPM sweep, one 0.6 RPM sweep and one 0.8	3
RPM sweep.	70
Figure 55: Top-view of the test terrain with 3D position estimates for person 1 (blue), perso	on
2 (green) and person 3 (red) for different configurations and RPM: 0.2 RPM (top-left), 0.6	_
RPM (top-right) and 0.8 RPM (bottom-center).	72
Figure 56: 3D x (top row) and y (bottom row) coordinate over time for all 3 test persons for	r a
0.2 RPM sweep (left column) and a 0.8 RPM sweep (right column). The persons were	
standing in a different configuration for both scans	73
Figure 57: Sun glare hindering correct detections.	77

Figure 58: Obstacle occluded by ship model77
Figure 59: Third person clearly visible and the car is properly detected and rendered
Figure 60: Visualization of TC-RCHS-2.02- Emergency stop
Figure 61: Detected red alert by the 3DWI system during container handling in two tests82
Figure 62: Crane slewing angle over the time for emergency stop test 1
Figure 63: Crane slewing angle and RPM over the time during the emergency brake situation. 83
Figure 64: 3DWI camera image at the moment the crane reached a full stop. The spreader
and container are then in the center of the image
Figure 65: Digital twin rendering of the remote environment, the container placements, the
moving container, and the red alert. Note that not long after this test the Digital Twin was
extended with the visualization of the spreader
Figure 66: Digital Twin rendering of the remote environment with a focus on the oblique and
top views of the sensor suite
Figure 67: The digital twin view during the demonstration of the red alert flow. This is the
final configuration of the digital twin, with spreader, container ids, work order, and alert
messages
Figure 68: Visualization of TC-RCHS-3.01 – Incorrect container ID
Figure 69: Detected container ID in white text on container
Figure 70: Screenshot of Immersive View with ground truth images
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik
Figure 71: The KPI and demonstration team behind-the-scenes in Örnsköldsvik

List of Acronyms

Abbreviation / acronym	Description
3DWI	3D World Interpreter
ARC	Active Rotation Compensation
BOD	Back Office Database
СТОу	Cargotec Oyj
CTSE	Cargotec Sweden Ab, aka Bromma
D1.1	Deliverable number 1 belonging to WP 1
EC	European Commission
KPI	Key Performance Indicator
MCGFI	MacGregor Finland Oy
MCGSE	MacGregor Sweden Ab
OCR	Optical character recognition
PI	Performance Indicator
RCHS	Robotic Container Handling System
SI	Success Indicator
SCC	Shore control center
SCS	Shore control Station
TNO	The Dutch Organization for Applied Scientific Research
WP	Work Package

Executive Summary

This deliverable describes the key performance outcomes of the MOSES Pilot Demonstration-3: Robotic Container handling (T7.4). Pilot Demonstration-3 deals with the robotic container handling system that has been developed under Tasks 3.3, 3.4 and 3.5 of WP3. The MOSES Pilot Demonstration and Evaluation Framework, including planning, test scenarios, and key performance indicators are described in D7.1.

The demonstration event is a joint effort by the AEGIS and MOSES projects. The development of the technology is divided between these two consortia. For the MOSES consortium, crane mechanical development and software development is achieved by MacGregor Sweden Ab (MCGSE). The innovations regarding the safety of the autonomous operation using 3D environment scanning, container and obstacle detection and real-time human activity alert-detection technologies (3DWI) have been developed by TNO, the Dutch Organization for Applied Scientific Research. The crane mechanical and software development and the 3D environment scanning technology were demonstrated at the MacGregor test site in Sweden. As part of the demonstration, TNO has also set up a shore control center in the Netherlands to monitor container handling in real time and resolve safety-critical issues.

To enable multiple operators to monitor and facilitate multiple autonomous processes simultaneously, an Intelligent Operator Support System (IOSS) has been demonstrated. This AI software layer assigns new operations to operators based on workload and expertise, supporting operators' situational awareness with a digital twin of the local environment, crane, containers, and providing alerts of safety and mission-critical conditions.

For the AEGIS consortium, Cargotec Sweden Ab (CTSE), aka Bromma, delivered and developed technology required for the container spreader. In addition, MacGregor Finland Oy (MCGFI) together with Cargotec Oyj (CTOy) created the software platform VCOP, which connects booking information with the supply chain up to the stowage planning and loading sequence of each individual port visit.

Each consecutive test case scenario executed in the MOSES Pilot Demonstration-3 builds on the previous case, so that at the end of the demonstration we have seen a successful implementation of the state-of-the-art technology with autonomous enabling technology.

