

AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping

MOSES	Pilot Demons	tration 2 Evalua	ation Report
Document Identifi	cation		
Status	Final	Due Date	30 November 2023
Version	1.0	Submission Date	07/12/2023
Related WP	WP2, WP3, WP7	Document Reference	D7.3
Related Deliverable(s)	D2.4, D3.1, D3.2, D7.1	Dissemination Level	PU/CO
Lead Participant	MARIN	Document Type:	R
Contributors	NTUA, DNV, PCT, AST	Lead Author	Hans Cozijn (MARIN)
		Reviewers	Elias Kotsidis (ESI)
			Pantelis Papachristou (CORE)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861678. The content of this document reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.

Document Information

List of Contributors		
First Name	Last Name	Partner
Hans	Cozijn	MARIN
Bas	de Kruif	MARIN
Ed	van Daalen	MARIN
Giorgio	lavicoli	MARIN

Document History			
Version	Date	Change editors	Changes
0.1	11/02/2022	Hans Cozijn	First version TOC
0.2	April 2022	Hans Cozijn	Document format up-date
0.3	May 2023	Hans Cozijn	KPI and SI description added
0.4	21/09/2023	Hans Cozijn	Draft report, without pilot results.
0.5	17/11/2023	Hans Cozijn	Draft report, for review
1.0	01/12/2023	Hans Cozijn	Final version to be submitted

Quality Control		
Role	Who (Partner short name)	Approval Date
Deliverable leader	MARIN	01/12/2023
Quality manager	NTUA	07/12/2023
Project Coordinator	NTUA	07/12/2023

Table of Contents

Executi	ve Summary	10
1. Intr	roduction	12
1.1	Purpose of the Document	12
1.2	Intended Readership	12
1.3	Document Structure	12
2. Obj	jectives and Requirements	14
2.1	Description of the Demonstrated Container Feeder Vessel Mission	14
2.2	Objectives of Task 7.3	15
2.3	System Requirements and Testing	15
2.3.	1 High Level Functional Requirements Task 7.3 (MoSCoW)	16
2.3.	2 Performance Evaluation - KPI's and SI's	17
2.3.	3 Other Requirements	18
2.3.	4 Performance Evaluation Framework - Testing	19
3. Tec	hnical Approach	20
3.1	Vessel Autonomy High-Level System Lay-out	20
3.2	Relation to Feeder Vessel Simulations (Task 3.2)	21
3.3	Demonstration Scenarios	22
4. Uni	its and Sign Conventions	24
4.1	General	24
4.2	Units	24
4.3	Scale Factors	25
4.4	Local Coordinate System (LCS)	25
4.5	Thrust and Azimuth Angle	27
4.6	Basin Fixed Coordinate System (BFCS)	27
5. Sha	llow Water Basin (BT)	28
5.1	General	28
5.2	Sign Convention	29
5.3	Wave Generation System	
6. Sea	keeping and Manoeuvring Basin (SMB)	32
6.1	General	32

MSES

6	. 2	Sign Convention	33
6	i.3	Wave Generation System	33
7.	Scal	e Models	36
7	'.1	General	36
7	.2	Innovative Feeder Vessel	36
	7.2.1	L Hull	36
	7.2.2	2 Appendages	36
	7.2.3	3 Actuators	36
	7.2.4	Top-sides	36
	7.2.5	5 Weight distribution	36
7	.3	Open Sea Area	37
7	.4	Schematic Port Model	38
	7.4.1	Fenders	39
	7.4.2	2 Quay position and orientation	40
8.	Mea	asurements and Data Acquisition	42
8	8.1	General	42
8	3.2	Data Acquisition	42
	8.2.1	Analogue Signals	42
	8.2.2	2 Digital Signals	42
	8.2.3	B Digital Signals (On-board)	42
8	3.3	Instrumentation	43
8	3.4	Communication between Vessel, Control Systems and Data Logging	44
8	8.5	Review of Measured Signals	44
8	8.6	Review of Derived Signals	44
8	3.7	Formulas for the Calculation of the Derived Signals	45
	8.7.1	Earth-fixed Motions	45
	8.7.2	2 Ship-fixed Motions	46
	8.7.3	3 Accelerations	46
	8.7.4	Comfort and safety	47
	8.7.5	5 Thrust	49
	8.7.6	5 Total thrust forces and moments	50
	8.7.7	Propulsion power and energy consumption	51
	8.7.8	3 Wind loads	52
9.	Vess	sel Autonomous Operation	54

9.1	General54
9.2	Simulation Model Set-up (Task 3.2)54
9.3	Pilot Demonstration Model Set-up (Task 7.3)55
9.4	Vehicle Control
9.4.1	Controllers
9.4.2	Allocation algorithms
9.5	Mission Management
9.5.1	State-machine
9.5.2	Operational states
9.5.3	State transitions
9.5.4	State-machine diagram60
10. Sim	ulation of Environmental Conditions62
10.1	General62
10.2	Waves
10.3	Wind Loads
10.3	1 Wind fans63
10.3	2 Wind fan control
10.4	Current
11. Moo	lel Test Review66
11.1	General
11.2	
	Functional Tests
11.2	Functional Tests 66 1 General tests 66
11.2 11.2	Functional Tests661 General tests662 Checking of operational states and state transitions66
11.2 11.2 11.3	Functional Tests661 General tests662 Checking of operational states and state transitions66System Identification Tests67
11.2 11.2 11.3 11.3	Functional Tests661 General tests662 Checking of operational states and state transitions66System Identification Tests671 Thrust-RPM measurement (thrusters)67
11.2 11.2 11.3 11.3 11.3	Functional Tests661 General tests662 Checking of operational states and state transitions66System Identification Tests671 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)67
11.2 11.2 11.3 11.3 11.3 11.3 11.3	Functional Tests661 General tests662 Checking of operational states and state transitions662 System Identification Tests671 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests68
11.2 11.3 11.3 11.3 11.3 11.3 11.3	Functional Tests661 General tests662 Checking of operational states and state transitions662 Checking of operational states and state transitions66System Identification Tests671 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests684 Standard Manoeuvring tests68
11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.4	Functional Tests661 General tests662 Checking of operational states and state transitions662 Checking of operational states and state transitions66System Identification Tests671 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests684 Standard Manoeuvring tests68Round Trip Variations68
11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.4	Functional Tests661 General tests662 Checking of operational states and state transitions662 Checking of operational states and state transitions673 System Identification Tests673 Heeling test and roll decay tests684 Standard Manoeuvring tests681 Round Trips in Calm Water68
11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.4	Functional Tests661 General tests662 Checking of operational states and state transitions662 Checking of operational states and state transitions673 System Identification Tests672 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests684 Standard Manoeuvring tests681 Round Trip Variations682 Round Trips in Calm Water682 Round Trips in Wind and Waves69
11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.4	Functional Tests661 General tests662 Checking of operational states and state transitions66System Identification Tests671 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests684 Standard Manoeuvring tests681 Round Trip Variations681 Round Trips in Calm Water682 Round Trips in Wind and Waves693 Actuator setting variations69
11.2 11.3 11.3 11.3 11.3 11.3 11.3 11.4 11.4	Functional Tests661 General tests662 Checking of operational states and state transitions662 Checking of operational states and state transitions673 System Identification Tests672 Thrust-RPM measurement (thrusters)672 Thrust-RPM measurements (wind fans)673 Heeling test and roll decay tests684 Standard Manoeuvring tests687 Round Trip Variations681 Round Trips in Calm Water682 Round Trips in Wind and Waves693 Actuator setting variations69Port Approach Variations70

11.7 Round Trip Demonstrations	71
12. Data Analysis and Presentation of Results	72
12.1 General	72
12.2 Types of Data Analysis	72
12.2.1 ASCII time traces	72
12.2.2 Statistical analysis	72
12.2.3 Plotted time traces	73
12.2.4 Top-view contour plots	73
12.2.5 Motion decay analysis	73
12.3 Visualization	74
12.3.1 Still photographs	74
12.3.2 Video recordings	74
13. Summary Discussion of the Results	76
13.1 General	76
13.2 System Identification Tests	76
13.2.1 Captive tests thrusters	76
13.2.2 Captive tests wind fans	80
13.2.3 Zig-zag tests	82
13.2.4 Turning circle tests	82
13.3 Round Trip Variations	83
13.3.1 Round Trips in Calm Water	83
13.3.2 Round Trips in Wind and Waves	84
13.3.3 Actuator setting variations	85
13.4 Port Approach Variations	85
13.5 DP Model Tests	87
13.6 Round Trip Demonstrations	89
13.7 Evaluation Framework – Test Cases	90
13.8 New Aspects	90
14. Conclusions and Recommendations	92
References	94
Annex 1: Tables	96
Annex 2: Figures	116
Annex 3: Photos	

Annex 4: Review of Measured and Derived Signals	130
Annex 5: Standard Working Methods	138

List of Tables

Table 1. System Modelling Approach	. 21
Table 2. Conversion factors at a model scale λ of 1:17	. 25
Table 3. Thruster open water coefficients (Thrust)	. 49
Table 4. Thruster open water coefficients (power)	.51
Table 5. D-cube wind fan coefficients	. 53
Table 6. List of operational states for the feeder vessel	. 59
Table 7. Wave conditions, based on probability of exceedance (Mykonos)	. 62
Table 8. Mean wind speeds, based on probability of exceedance (Piraeus, Mykonos)	. 65

List of Figures

Figure 1. Container Feeder Vessel - Greek Case II14
Figure 2. Schematic representation of container feeder round trip14
Figure 3. Operational states during round trip15
Figure 4. Overview of the Innovative Feeder Evaluation Framework (from D7.1)19
Figure 5. High-level system lay-out
Figure 6. Sketch of a possible roundtrip in the Seakeeping and Manoeuvring Basin (SMB) 23
Figure 7. General OCIMF convention
Figure 8. Overview of the Shallow Water Basin (BT)28
Figure 9. Example of a test set-up in the Shallow Water Basin (BT) 29
Figure 10. Representation of the Basin Fixed Coordinate System (BFCS) in the BT29
Figure 11. Wave generation capability in the Shallow Water Basin (BT)
Figure 12. Overview of the SMB, with basin carriage and wave generators (left)32
Figure 13. Basin-fixed Coordinate System (BFCS) in the SMB
Figure 14. Wave generation capability in the Seakeeping and Manoeuvring Basin (SMB) \dots 34
Figure 15. Cross-section of the schematical port with fender and ship model
Figure 16. Working principle of the mechanical fender models
Figure 17. Linearised Fender Load-compression Characteristics
Figure 18. Electrical and communications plan of the on-board systems
Figure 19. Global structure of the time-domain simulation model54

Figure 20. Initial simulation model set-up	55
Figure 21. Set-up of "split" simulation model	55
Figure 22. Set-up of "split" simulation model with state machine GUI	56
Figure 23. Control set-up for the Pilot Demonstration	56
Figure 24. State machine diagram for the execution of the round-trip	60
Figure 25. Example of a D-cube wind fan	63
Figure 26. Location of the D-cube wind fans on the ship model	64
Figure 27. Typical time trace of a decay test	73
Figure 28. Set-up of the Captive Tests in the BT	76
Figure 29. Thrust-RPM measurements for the Azimuthing Thrusters	77
Figure 30. Thrust-RPM measurements for the Bow Tunnel Aft	78
Figure 31. Thrust-RPM measurements for the Bow Tunnel Fore	79
Figure 32. Force-RPM measurements for the wind fan pair FX	80
Figure 33. Force-RPM measurements for the wind fan pair FYA	81
Figure 34. Force-RPM measurements for the wind fan pair FYF	81
Figure 35 Zig-zag test (10-10)	82
Figure 36 Zig-zag test (20-10)	82
Figure 37. Turning circle test	83
Figure 38. Round-trip in calm water	83
Figure 39. Round-trips in wind and waves	84
Figure 40. Approach track - effect of control points	85
Figure 41. Approach track - effect of initial heading	86
Figure 42. Mean DP power in different environmental conditions	87
Figure 43. Heading variations in different environmental conditions	88
Figure 44. Position error variations in different environmental conditions	88
Figure 45. Top-view contour plot of the demonstration round-trip	89
Figure 46. Visitors on the basin carriage during the Pilot Demonstration	89

List of Acronyms

Abbreviation / acronym	Description
BT	Binnenvaart Tank (Shallow Water Basin)
COLREGS	Convention on the International Regulations for Preventing Collisions at Sea
D1.1	Deliverable number 1, belonging to WP1
DP	Dynamic Positioning
EC	European Commission
EGA	Effective Gravity Angle
GUI	Graphical User Interface
IMO	International Maritime Organization
ISO	International Organization for Standardization
КРІ	Key Performance Indicator
MARIN	Maritime Research Institute Netherlands
MSDV	Motion Sickness Dose Value
MMS2	MARIN Measurement System (v2) – data acquisition for analogue signals
MSES	MARIN Synchronised External Systems – data acquisition for digital signals
MSI	Motion Sickness Index
NATO	North Atlantic Treaty Organization
OCIMF	Oil Companies International Marine Forum
PIANC	Permanent International Commission for Navigation Congresses
SGISC	Second Generation Intact Stability Criteria
SI	Success Indicator
SMB	Seakeeping and Manoeuvring Basin
STANAG	Standardization Agreement (NATO)
T1.1	Task 1, belonging to WP1
TEU	Twenty-foot Equivalent Unit
WP	Work Package
XMF	eXtensible Modelling Framework

This page was intentionally left blank.

Executive Summary

This is the technical report for T7.3 "Pilot Demonstration 2 - Innovative Feeder Vessel". T7.3 was led by MARIN. Pilot Demonstration 2 is part of the scope of work of the Horizon 2020 project MOSES.

The report D7.3 was prepared by MARIN, with various contributions from NTUA. In addition, technical discussions with NTUA, DNV, AST and PCT during project meetings are reflected in the contents of this report.

Pilot Demonstration 2 concerns the demonstration of the autonomous operation of the Innovative Feeder Vessel. A 1:17 scale model of the ship made a round-trip through MARIN's Seakeeping and Manoeuvring Basin (SMB), without operator input, including automated docking and undocking. The environment included an area of open sea, with irregular waves and gusting wind, in which a schematic port of departure and arrival was placed.

D7.3 discusses the applied technical approach and the results of Pilot Demonstration 2. The scale models, including instrumentation and actuator hardware are described. The algorithms for vehicle control and autonomy are discussed, including their relation to the time-domain simulations documented in D3.2. The test set-up, the modelling of environmental conditions, the test program and the applied data analysis are presented. Finally, the report contains a discussion of the results and a selection of photographs of the model, the test basin and the execution of the tests.

The technical approach of combined time-domain simulations and model tests, as discussed in Chapter 3 of this deliverable, proved to be successful. First, the algorithms for vehicle control and autonomy were developed, implemented and tested in a simulation environment. This part of the work was described in D3.2. Second, the simulation models were adapted, step-by-step, for use in the basin tests. As a final step, the simulated ship and the surroundings were replaced by a physical scale model, which was placed in a model basin.

The experimental scope of work consisted of several series of tests, with different objectives. The final series of tests was the actual demonstration of the feeder autonomous capabilities.

First, system identification tests were carried out. The aim was to derive properties of the scale model of the innovative feeder vessel, using dedicated measurements. These included thrust-RPM relations of the thrusters and wind fans, as well as manoeuvring properties of the ship.

Second, round-trip variations were carried out. A round-trip was defined in the basin, with the beginning and end in the docked situation at the schematic port model. Sailing of the round-trip was repeated with several systematic variations in the environmental conditions and vessel control. The results showed that the vessel could make the round-trip and dock at the port autonomously in all considered environmental conditions.

Third, port approach variations were carried out. A second, longer, round-trip was defined in the basin, with the beginning and end in the docked situation at the schematic port model. Variations were made in the track that defines the approaching phase. The shape of the track in the approaching phase has an effect on the position accuracy and remaining velocity when starting the pre-docking phase.

Subsequently, Dynamic Positioning (DP) tests were carried out. The DP station keeping performance of the innovative feeder was tested in different collinear environmental conditions, using a range of heading set-points. The effect of heading set-point on the energy consumption and positioning accuracy was investigated.

Finally, demonstration tests were performed. A third, longer, round-trip was defined in the basin, with the beginning and end in the docked situation at the schematic port model. This round-trip also included variations in speed along the trip. Buoys were placed in the basin to mark the route. This route was made specifically for use during the visitors' day of Pilot Demonstration 2.

The Pilot Demonstration 2 contained several new techniques and modelling methods. In the basin tests a completely wireless ship model was used, with wireless transfer of measurement and control signals by Wi-Fi. The algorithms for autonomous control were running on PC inside the model. Furthermore, a camera-based system for relative position measurement was developed for use during the docking phase, but unfortunately it could not be made operational for use during the basin tests.

