

AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping

D.7.2: Pilot Demonstration 1 - AutoDock

Document Identification				
Status	Final	Due Date	30/11/2023	
Version	1.0	Submission Date	31/12/2023	
Related WP	WP7	Document Reference	D.7.2	
Related Deliverable(s)	D2.4, D4.1, D4.2, D4.3, D4.4, D7.1, D7.5 D8.1, D8.5	Dissemination Level	СО	
Lead Participant	TUCO	Document Type:	R	
Contributors	NTUA, CORE, SAT, DNVGL, AST, PCT, TRELL, ESI, VPF	Lead Author	Søren Pedersen (TUCO)	
		Reviewers	Konstantinos Louzis (NTUA)	
			Maria Sampedro (AST)	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861678. The content of this document reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.

Document Information

List of Contributors			
First Name	Last Name	Partner	
Søren	Pedersen	TUCO	
Elias	Kotsidis	ESI	
Vicente	Perales	VPF	
Ignacio	Benítez	VPF	
David	Tidy	TRELL	
Viraj	Kulkarni	TRELL	
Jason	Whitehouse	TRELL	
Marios	Koimtzoglou	NTUA NAVAL	
Athanasia	Sakavara	CORE	
Andreas	Mantelos	CORE	
Pantelis	Papachristou	CORE	
Margarita	Kostovasili	NTUA ECE	
Maria	Sampedro	AST	

Document History			
Version	Date	Change editors	Changes
0.10	08/11/2023	Søren Pedersen	ToC draft version
0.15	16/11/2023	E. Kotsidis / S. Pedersen	ToC (feedback from ESI & CORE) + structure of subclauses
0.20	20/11/2023	S. Pedersen	Input to different chapters
0.25	22/11/2023	V. Perales/ I. Benitez	Input from VPF
0.30	01/12/2023	D. Tidy	Input from TRELL
0.35	01/12/2023	M. Koimtzoglou	Input from NTUA Naval
0.40	04/12/2023	A. Mantelos, A. Sakavara	Input from CORE
0.45	04/12/2023	E. Kotsidis	Input from ESI
0.50	07/12/2023	M. Kostovasili	Input from NTUA ECE

Document History			
Version	Date	Change editors	Changes
0.55	07/12/2023	A. Mantelos, A. Sakavara	Input from CORE
0.60	07/12/2023	D. Tidy	Input from TRELL
0.65	12/12/2023	M. Koimtzoglou	Input from NTUA Naval
0.70	13/12/2023	M. Sampedro	Input from AST
0.75	13/12/2023	M. Koimtzoglou	Input from NTUA Naval
0.80	13/12/2023	S. Pedersen	Draft for review
0.85	15/12/2023	D. Tidy	Input from TRELL
0.90	18/12/2023	I. Kotsidis	Input from ESI for the complete deliverable
0.91	19/12/2023	V. Kulkarni	Input from TRELL
0.92	20/12/2023	M. Sampedro	Input from AST
0.93	20/12/2023	P. Papachristou	Input from CORE
0.95	20/12/2023	V. Kulkarni	Input from TRELL
0.99	21/12/2023	I. Kotsidis	Review of the complete deliverable
1.0	28/12/2023	I. Kotsidis	Final version to be submitted

Quality Control			
Role	Who (Partner short name)	Approval Date	
Deliverable leader	TUCO	21/12/2023	
Quality manager	NTUA	29/12/2023	
Project Coordinator	NTUA	30/12/2023	

Table of Contents

Exe	ecutiv	e Summary1	15
1.	Intro	duction1	16
1	.1	Purpose of the Document1	16
1	.2	Intended Readership1	16
1	.3	Document Structure1	16
2.	Pilot	test setup1	L 7
2	.1	Description of the AutoDock Demonstration1	٢7
2	.2	Testing scenarios and methodology	20
2	.3	Test Equipment	26
	2.3.1	Faaborg port	26
	2.3.2	AutoMoor	30
	2.3.2	1 AutoMoor Foundation	33
	2.3.3	Workboats	34
	2.3.3	1 Demonstrator 1	35
	2.3.3	2 Demonstrator 2	38
	2.3.4	Barge	39
	2.3.4	1 Wall structure	12
	2.3.5	Shore Tugboat Control Station mock-up	53
	2.3.6	Workboats sensors	57
	2.3.6	1 AutoPilot	57
	2.3.6	.2 GPS6	55
	2.3.6	.3 Swath sonar6	59
	2.3.6	4 IMU	71
	2.3.6	.5 LIDAR	72
	2.3.6	.6 Communications Network	75
	2.3.7	AI Algorithm training	77
3.	Pilot	test results7	/8
3	.1	Testing scenarios	79
3	.2	TC-AT-1.01 to 1.04: AI Algorithm Training – Single workboat operation	32
	3.2.1	Description of executed test	33

3.2.2	Result
3.2.3	Conclusion
3.3 T	C-AT-2.01: External Control Helm commands87
3.3.1	Description of executed test
3.3.2	Result
3.3.3	Conclusion90
3.4 T	C-AT-2.02: GPS measurements
3.4.1	Description of executed test90
3.4.2	Result94
3.4.3	Conclusion95
3.5 T	C-AT-2.03: LiDARs' measurements96
3.5.1	Description of executed test96
3.5.1	Result97
3.5.2	Conclusion
3.6 T	C-AT-2.04: Swath sonar measurements99
3.6.1	Description of executed test
3.6.2	Result
3.6.3	Conclusion
3.7 T	C-AT-2.05: IMUs' measurements102
3.7.1	Description of executed test103
3.7.2	Result
3.7.3	Conclusion
3.8 T	C-AT-2.06: Fuel/ battery level monitoring107
3.8.1	Description of executed test107
3.8.2	Result
3.8.3	Conclusion
3.9 To operation	C-AT-3.01 to 3.04: AutoPilot mission achievement performance – Single workboat
3.9.1	Description of executed test110
3.9.2	Result
3.9.3	Conclusion
3.10 T	C-AT-7.01 & 7.02: Autonomous tugboat communication
3.10.1	Description of executed test
3.10.2	Result

3.10.3 Conclusion
3.11 TC-AT-8: Autonomous tugboat fail-safe operation
3.11.1 Description of executed test
3.11.2 Result
3.11.3 Conclusion
3.12 TC-AD-1.1 to 1.3: Tablet/PC based SCADA user interface
3.12.1 Description of executed test122
3.12.2 Result
3.12.3 Conclusion
3.13 TC-AD-2.1: System uptime/ availability124
3.13.1 Description of executed test125
3.13.2 Result
3.13.3 Conclusion
3.14 TC-AD-3.1: Ability to operate AutoMoor units individually or as a group
3.14.1 Description of executed test126
3.14.2 Result
3.14.3 Conclusion
3.15 TC-AD-4.1: Start-up/arming sequence
3.15.1 Description of executed test127
3.15.2 Result
3.15.3 Conclusion
3.16 TC-AD-5.1: Target vessel recognition128
3.16.1 Description of executed test129
3.16.2 Result
3.16.3 Conclusion
3.17 TC-AD-5.2: Target Vessel mooring procedure
3.17.1 Description of executed test131
3.17.2 Result
3.17.3 Conclusion
3.18 TC-AD-6.1: Warning to tugs
3.18.1 Description of executed test133
3.18.2 Result
3.18.3 Conclusion
3.19 TC-AD-7.1 to 7.2: Mooring Parameter monitoring

	3.19.1	Description of executed test	. 135
	3.19.2	Result	. 136
	3.19.3	Conclusion	. 137
3	.20 T	C-AD-8.1: The system backup	. 137
	3.20.1	Description of executed test	. 138
	3.20.2	Result	. 138
	3.20.3	Conclusion	. 139
3	3.21 T	C-AD-9.1 to 9.2: AutoMoor performance	. 139
	3.21.1	Description of executed test	. 139
	3.21.2	Result	. 140
	3.21.3	Conclusion	. 140
3	3.22 T	C-AD-10.1: AutoMoor messaging	. 141
	3.22.1	Description of executed test	. 141
	3.22.2	Result	. 143
	3.22.3	Conclusion	. 144
3	.23 T	C-AT/AD-1.01 to 1.02: Autonomous tugboat swarm operation (Simulations)	. 144
	3.23.1	Description of executed test	. 145
	3.23.2	Result	. 146
	3.23.3	Conclusion	. 149
3 (.24 To Demons	C-AT/AD-2.01 to 2.02: Autonomous tugboat swarm and Automoor operative tration)	ation . 150
	3.24.1	Description of executed test	. 151
	3.24.2	Result	. 151
	3.24.3	Conclusion	. 151
4.	Evalua	ition of Pilot results	.153
4	.1 E	valuation of test results	. 153
4	.2 Le	essons learned	. 167
	4.2.1	Assessing the level of automation for the tugboats	. 167
	4.2.2	Assessing tugboats swarm intelligence	. 168
	4.2.3	Assessing AutoMoor's unit level of automation	. 168
	4.2.4	Assessing the collaboration of the autonomous tugboats with the autom	ated
	moorir	g system	. 169
5.	Conclu	isions and future work	.170
Re	ference	S	.172

List of Tables

Table 1: Description of test scenarios for Assessing the level of automation for the tugboats.
Table 2: Description of test scenarios for Assessing tugboats swarm intelligence. 23
Table 3: Description of test scenarios for Assessing AutoMoor's unit level of automation24
Table 4: Description of test scenarios for Assessing the collaboration of the Autonomous
tugboats with the AutoMoor system
Table 5: Allowable Stresses. 44
Table 6: Results of the Structural Analysis for the wall structure. 46
Table 7: Description material Summary. 47
Table 8: Fluid analysis units. 48
Table 9: Data analysis
Table 10: Final data analysis
Table 11: Requirements and specification for the AutoPilot from D4.1. 59
Table 12: Specifications of SCX-20 satellite compass. 68
Table 13: Specifications of DFF-3D multi-beam sonar70
Table 14: Specifications of the Ellipse 2-A AHRS sensor. 71
Table 15: Specifications of the Ellipse 2-A AHRS incorporated sensors. 72
Table 16: Testing scenarios list. 79
Table 17: Description of testing scenarios TC-AT-1.01 to 1.04 - AI Algorithm Training – Single
workboat operation
Table 18: Description of test scenarios TC-AT-2.01 - External Control Helm commands 87
Table 19: Description of test scenarios TC-AT-2.02 - GPS measurements. 90
Table 20: Description of test scenario TC-AT-2.03 - LiDARs' measurements. 96
Table 21: Results of LiDAR accuracy and precision calculation. 97
Table 22: Description of test scenario TC-AT-2.04 - Swath sonar measurements. 99
Table 23: Description of test scenario TC-AT-2.05 - IMUs' measurements
Table 24: Description of test scenario TC-AT-2.06 - Fuel/ battery level monitoring
Table 25: Description of test scenarios TC-AT-3.01 to 3.04 - AutoPilot mission achievement
performance – Single workboat operation110
Table 26: Description of test scenario TC-AT-7.01 & 7.02 - Autonomous tugboat
communication
Table 27: Description of test scenario TC-AT-8 - Autonomous tugboat fail safe operation 119
Table 28: Description of test scenario TC-AD-1.1 - Tablet/PC based SCADA user interface. 120
Table 29: Description of test scenario TC-AD-1.2 - Tablet/PC based SCADA user interface. 121
Table 30: Description of test scenario TC-AD-1.3 - Tablet/PC based SCADA user interface. 121
Table 31: Description of test scenario TC-AD2.1 - System uptime availability
Table 32: Description of test scenario TC-AD-3.1 - Ability to operate AutoMoor units
individually or as a group125
Table 33: Description of test scenario TC-AD-4.1 - Start-up/arming sequence
Table 34: Description of test scenario TC-AD-5.1 - Target vessel recognition

Table 35: Description of test scenario TC-AD-5.2 - Target Vessel mooring procedure 131
Table 36: Description of test scenario TC-AD-6.1 - Warning to tugs
Table 37: Description of test scenario TC-AD-7.1 - Mooring Parameter monitoring
Table 38: Description of test scenario TC-AD-7.2 - Mooring Parameter monitoring
Table 39: Description of test scenario TC-AD-8.1 – The system backup
Table 40: Description of test scenario TC-AD-9.1 - AutoMoor performance
Table 41: Description of test scenario TC-AD-9.2 - AutoMoor performance
Table 42: Description of test scenario TC-AD-10.1 - AutoMoor messaging
Table 43: Description of test scenario TC-AT/AD-1 - Autonomous tugboat swarm operation
(Simulations)145
Table 44: Description of test scenario TC-AT/AD-2 - Autonomous tugboat swarm and
AutoMoor operation (Demonstration)150
Table 45: Evaluation of test performed in relation to assessing tugboats swarm intelligence.
Table 46: Evaluation of test performed in relation to assessing AutoMoor's unit level of
automation
Table 47: Evaluation of test performed in relation to assessing the collaboration of the
Autonomous tugboats with the AutoMoor system

List of Figures

Figure 1: Illustration of Pilot 1's role in the MOSES project.	17
Figure 2: Illustration of Pilot 1 - AutoMoor, testing concept in Faaborg harbor	18
Figure 3: Two workboats pushing the barge equipped with steel structure (wall side)	19
Figure 4: Two workboats pushing the barge, which is approaching the AutoMoor unit	19
Figure 5: Top view showing the barge, which is connected to the AutoMoor unit	20
Figure 6: Top of Faaborg harbor showing test area.	26
Figure 7: Top view of Faaborg harbor showing test position in relation to surrounding ship	DS.
	27
Figure 8: View showing ferry approaching at the right.	27
Figure 9: View showing ferry in background.	28
Figure 10: Top view showing starting point for trials	28
Figure 11: Neighbour ship moored close to the testing area	29
Figure 12: Handheld wind measure tool.	29
Figure 13: Flooding of the testing area end of the week for testing	30
Figure 14: Trelleborg's MOSES AutoMoor Unit	31
Figure 15: AutoMoor services tray showing optimised, small-scale services design	32
Figure 16: Small-scale AutoMoor being delivered to site.	33
Figure 17: Initial situation posed for the AutoMoor.	34
Figure 18: Demonstrator 2 at left side and Demonstrator 1 at right side	35
Figure 19: Demonstrator 1 in operation	36
Figure 20: Left – bracket / right – LiDAR mounted	36
Figure 21: Demonstrator approaching the barge.	37
Figure 22: Tire fender protecting the demonstrator while pushing	37
Figure 23: Demonstrator 2 in operation	38
Figure 24: Electrical motors by Torqeedo in Demonstrator 2	39
Figure 25: Barge before being modified	39
Figure 26: Barge with steel structure.	40
Figure 27: Barge with concrete blocks (white with blue text).	41
Figure 28: Barge with white "wall sides" reflector	41
Figure 29: Work boat tied to the barge	42
Figure 30: Proposed wall structure model	43
Figure 31: Proposed wall structure model steel stresses	44
Figure 32: Load locations 1, 2 and 3 (from left to right, first row), deflection results (cases	
LC3, LC10, LC19 from left to right, second row), Von-mises stress (cases LC2, LC10, LC18 fr	rom
left to right, third row) and Shear stress (cases LC2, LC10, LC18 from left to right, fourth ro	ow). 45
Figure 33: Wall structure centre of gravity	47
Figure 34: Simulation of barge structure and counterweight position for zero trim	
calculations.	48
Figure 35: Hydrostatic graph.	50
Figure 36: Manufacturing drawing	51
Figure 37: Manufacturing drawing	51

Figure 38: Transport dimension5	52
Figure 39: Position on the barge5	52
Figure 40: Position of the counterweight5	53
Figure 41: STCS Mock-up to visualize the autonomous tugboat position in real time	54
Figure 42: PostgreSQL relational database design5	55
Figure 43: Components of the mock-up architecture5	55
Figure 44: Mock-up deployment architecture in Docker containers	56
Figure 45: Purpose of a reverse proxy. Source: IONOS5	6
Figure 46: AutoPilot System Architecture Interconnections (component view)	57
Figure 47: Decentralized Microservice AutoPilot Architecture	58
Figure 48: J1939 Throttle State Machine	50
Figure 49: NMEA2K Steering State Machine	51
Figure 50: AutoMoor Flowchart control sequence	52
Figure 51. Specifications of ZED-F9P series GNSS module (u-blox)	6
Figure 52: GPS setup onboard Demonstrator 1 (u-blox ZED-F9P series GNSS module, NVIDIA	
Jetson Nano)	57
Figure 53: Furuno SCX-20 (up left) with quad-antenna design (down left) positioned on	
Demonstrator 2 (right)	58
Figure 54: Swath sonar transducer positioned on the pole's end at the stern of Demonstrator	r
2 (CAD drawing provided by TUCO)6	;9
Figure 55: DFF-3D signal processing unit (left), multi beam transducer B54 (right)	0'
Figure 56: Ellipse 2-A sensors positioned in Demonstrator 1 (left) and Demonstrator 2 (right).	•
	'1
Figure 57: The LiDAR installed on the metallic base at the bow the workboat and the	
barriers-white walls placed on the barge7	'3
Figure 58: Data (JSON format) sent to the broker7	′5
Figure 59. Teltonika modem7	′5
Figure 60. Schematic of the communication network7	<i>'</i> 6
Figure 61. Network setup onboard Demonstrator 2 (Teltonika modem, Ethernet switch)7	<i>'</i> 6
Figure 62: MOSES simulation environment in Unity, showing the old and the new	
demonstration locations	'8
Figure 63: The images correspond to the three simulated scenarios in the Unity environmen	ıt
a) Scenario TC-AT 1.01. b) Scenario TC-AT 1.02. c) Scenario TC-TA 1.04. The images include	
annotations highlighting the workboat's initial position and additional information based on	I
the simulation	33
Figure 64: The graphs illustrate simulations of the autonomous workboat in three scenarios.	•
	36
Figure 65: Steering Control System components wiring	38
Figure 66: Thrust Control System components/wiring	38
Figure 67: Desired (blue line) vs measured (orange line) angle of Helm	39
Figure 68. Schematic of GPS physical connectivity (Demonstrator 1)	11
Figure 69: Schematic of GPS-Software-Autonilat interaction (Demonstrator 2) 9	
right os. schemate of of s software Autophot interaction (Demonstrator 2).)1
Figure 70: Static class diagram of the GPS entity)1)4

Figure 72: Measurement of a known distance with the LiDAR, in order to check the	5
deviation	98
Figure 73: Schematic of the Multibeam Sonar-Software-AutoPilot interaction (Den	nonstrator
2)	100
Figure 74: Illustration of the acquisition software developed whereas depth alarm	rules can
be chosen (top)	
Figure 75: Static class diagram of the Sonar entity	
Figure 76: TimeZero window view, isobath and depth comparison in the harbor	
Figure 77: Schematic of the IMU-Software-AutoPilot interaction (Demonstrator 1 a	Ind
Demonstrator 2)	
Figure 78: Static class diagram of the IMU and settings entity	
Figure 79: Controllers diagram.	105
Figure 80: Classes implementation.	105
Figure 81: Sequence diagram for produce and send JSON messages	106
Figure 82: Fuel level instrument.	
Figure 83: Display for Torqeedo electrical propulsion installation.	
Figure 84: Autonomous workboat demonstration of scenarios TC-AT-3.01, TC-AT-	3.02 <i>,</i> TC-
AT- 3.04	111
Figure 85: Network latency performance.	
Figure 86: Network error rate performance.	115
Figure 87: Network data rate performance	
Figure 88: Network jitter performance	
Figure 89: Existing records in the database autotug table during the test.	
Figure 90: STCS Mock-up: Users with access to the platform.	
Figure 91: MOSES REST API Swagger Documentation.	
Figure 92: Left Raymarine system in Power Steer mode (Automatic), Right Throttle	controls.
Figure 93: AutoMoor SCADA Control System Architecture	
Figure 94: MOSES AutoMoor SCADA System Main Screen.	123
Figure 95: SCADA System Showing Active Alarm Status.	123
Figure 96: SCADA System Showing Disabled Pads (Circled).	
Figure 97: MOSES AutoMoor Data Trend Showing Arming Process Complete With	in 2
Minutes	
Figure 98: Example AutoMoor SCADA Screen Showing AIS Identification	
Figure 99: AIS Receiver Unit Within AutoMoor Control Panel	
Figure 100: SCADA System Showing Tugboat Commands (Above) And AutoMoor R	esponse
(Below)	132
Figure 101: Extract from MOSES AutoMoor MODBUS Protocol Showing Available N	Messages.
	133
Figure 102: SCADA System Showing Active Alarm.	
Figure 103: AutoMoor Installation.	
Figure 104: SCADA System Showing Active Alarm	
Figure 105: SCADA System Showing Vessel Too Far from Fender-line	
Figure 106: AutoMoor report showing mooring and detach duration	
Figure 107: SCADA System Showing Successful Mooring Status	

List of Acronyms

Abbreviation / acronym	Description
AC	Alternating current
AD	Autodock
ADS	Automated docking system
AI	Artificial Intelligence
AIS	Automatic identification systems
AT	Autonomous Tugboats
CAD	Computer Aided Design
CAN	Controller Area Network
CPU	Central processing unit
D1.1	Deliverable number 1 belonging to WP 1
EC	European Commission
GA	Grant Agreement
GPS	Global Positioning System
gRPC	Remote Procedure Call
HW	Hardware
lloT	Industrial Internet of Things
IMU	Inertial Measurement Unit
IP	Internet protocol
KPI	Key Performance Indicator
LAN	Local Area Network
Lidar	Light Detection and Ranging
MB	Mega Bytes
ML	Machine Learning
MOSES	Automated Vessels and Supply Chain Optimization for Sustainable Short Sea Shipping
MQTT	Message Queue Telemetry Transport
MS	milliseconds
NMEA	National Marine Electronics Association

Abbreviation / acronym	Description
ONNX	Open Neural Network Exchange
РС	Personal computer
PGN	Parameter Group Number
PI	Performance Indicators
PLC	Programmable Logic Controller
RAMI	Reference Architecture Model for industry 4.0
REST	Representational state transfer
RPM	Revolutions Per Minute
SCC	Shore control Center
SCS	Shore control Station
SI	Success Indicator
SIM	Subscriber Identity Module
SSS	Short Sea Shipping
STCS	Shore Tugboat Control Station
SW	Software
тс	Test Case
Т	Tonnes
VPN	Virtual private network
WAN	Wide area Network
WB	Workboat
WLAN	Wireless local area network
WP	Work Package

Executive Summary

This deliverable "D7.2 Pilot Demonstration 1 - Autodock" is the outcome of Task 7.2 with the same title and is a part of WP7 of the MOSES project, which is funded by the European Commission's Innovation and Networks Executive Agency (CINEA) under the Horizon 2020 research and innovation program (H2020). This deliverable is closely connected to deliverable D7.1 "Pilot Demonstrations and Evaluation of MOSES innovations", where the main task was to plan a successful execution of Pilot Demonstrations 1, 2 and 3 (T7.2, T7.3, and T7.4 respectively). Furthermore D2.4 "Specifications for the MOSES innovations" and D4.1 "Architecture for autonomous tugboat operation" are vital part of the background for D7.2.

In this report the execution of Pilot Demonstration 1 (T7.2) is described. This pilot demonstrated the MOSES AutoDock System for manoeuvring and docking a container ship in a Deep Sea Shipping (DSS) port. The demonstration employed downscaled versions of the components, including a barge with a mounted steel structure instead of a container ship, two workboats instead of tugboats, and a small-scale redesigned AutoMoor unit that was mounted on the jetty for attaching the barge. The workboats were autonomously controlled by an algorithm that calculated the optimal trajectory and controlled swarm operation of the workboats for pushing the barge to the AutoMoor unit. The control system on the workboats also communicated with the AutoMoor unit to automatically trigger the mooring process.

This deliverable describes the testing platform on an individual component level (as built) with the different constraints and how implementation challenges were overcome. In addition, the testing scenarios defined in D2.4 and D7.1 and the respective outcomes are presented. It should be noted that due to a storm arriving unexpectedly during the testing period, certain of the planned testing scenarios were not executed. However, the testing scenarios that were implemented fully covered the scope of the demonstration and therefore its objectives were achieved.

Pilot Demonstration 1 proved the functionality of the sensors and other supporting electronic devices, the autonomous operation of the workboats, where one was autonomously driven and one was manually driven, and the automated docking by the AutoMoor unit. Out of the total 51 performance evaluations that corresponded to the testing scenarios executed during the demonstration, 57% were evaluated with "Excellent" validation. Based on the results of the demonstration, several lessons learned were identified and significant conclusions were drawn that indicated the next steps for future research.

