

AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping

D.3.5: Intelligent Operator Support

Document Identification			
Status	Final	Due Date	Thursday, 30 June 2022
Version	1.0	Submission Date	30/06/2022
Related WP	WP3	Document Reference	D.3.5
Related Deliverable(s)	D3.3	Dissemination Level	СО
Lead Participant	TNO	Document Type:	R
Contributors	MCGSWE	Lead Author	Jasper van der Waa, MSC
		Reviewers	Konstantinos Louzis, NTUA
			Mercedes De Juan Muñoyerro, VPF

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861678. The content of this document reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.

Document Information

	List of Contributors	
First Name	Last Name	Partner
Jasper	van der Waa	TNO
Hans	van den Broek	TNO
Valentina	Maccatrozzo	TNO
Tom	Hueting	TNO
Mirjam	Huis in 't Veld	TNO

Document History			
Version	Date	Change editors	Changes
0.1	7/2/2022	Jasper van der Waa, Hans van den Broek	Table of contents
0.2	7/3/2022	Jasper van der Waa	Added section 1 and 2.
0.3	6/5/2022	Valentina Maccatrozzo, Jasper van der Waa	Added section 3
0.4	23/5/2022	Jasper van der Waa	Added section 4
0.5	07/6/2022	Tom Hueting	Added section 5
0.6	07/6/2022	Hans van den Broek	Added section 6 and executive summary; overall review
0.7	10/6/2022	Tom Hueting	Finalized section 5
0.8	10/6/2022	Jasper van der Waa	Final internal review of draft
0.9	27/6/2022	Konstantinos Louzis, Mercedes De Juan Muñoyerro, Mirjam Huis op 't Veld	Reviews with minor textual changes and suggestions.
0.95	29/06/2022	Jasper van der Waa	Processed reviews. Added section 7 (bibliography).
1.0	29/06/2022	Jasper van der Waa	Final version to be submitted.

	Quality Control	
Role	Who (Partner short name)	Approval Date
Deliverable leader	TNO	29/06/2022
Quality manager	NTUA	27/06/2022

	Quality Control	
Role	Who (Partner short name)	Approval Date
Project Coordinator	NTUA	30/06/2022

Table of Contents

Exe	ecutiv	e S	Summary	.9
1.	Intro	odu	uction	11
1	.1	Ρι	urpose of the document	11
1	.2	In	tended readership	11
1	.3	Do	ocument Structure	11
2.	Rob	oti	ic Container Handling System	13
3.	Desi	gn	of the remote operator support concept	16
3	.1	Ge	eneralized operation phases	17
3	.2	Pe	ersonas	18
3	.3	Na	arrated scenario	22
3	.4	Us	ser stories	27
4.	Inte	llig	gent Operator Support System	32
4	.1	Dy	ynamic Task allocation	33
	4.1.1	-	Workload as a basis of task allocation	34
	4.1.2	2	Cost function for allocations	36
	4.1.3	;	Optimisation	37
	4.1.4	Ļ	Results	38
	4.1.5	,	Discussion and Conclusion	51
4	.2	Сс	ontinuous Risk Assessment	52
	4.2.1	-	Approach	54
	4.2.2	<u>,</u>	Advantages and disadvantages	56
4	.3	Pr	ogressively Disclosing Interactions	57
	4.3.1		A global view: The fleet view	59
	4.3.2	2	A local view: The Vessel view	61
	4.3.3	5	A situational view: The Immersive View	63
4	.4	Sc	oftware architecture and communication	66
	4.4.1	-	Envisioned network architecture	67
	4.4.2	<u>.</u>	External data flow	69
	4.4.3	5	IOSS Software architecture	71
5.	Rem	ot	e situational awareness	72

D.3.5: Intelligent Operator Support

	5.1	Background	72
	5.1.1	Research Questions	73
	5.1.2	Hypotheses	73
	5.2	Methods	74
	5.2.1	Tasks	74
	5.2.2	Study population	75
	5.2.3	Study procedure	76
	5.2.4	Conditions	77
	5.3	Data-analysis & Results	79
	5.3.1	ID task	79
	5.3.2	Detection task	81
	5.4	Conclusions and discussion	82
6	. Conc	lusions	84
7	'. Refe	rences	86

List of Tables

Table 1: The persona table of 'Otto Octavius', the archetype of the envisioned remote	
operator. This remote operator supervises the many autonomous loading operations in	
parallel and is responsible for their safe and effective execution	20
Table 2: The persona table of 'Tessa Termaine', the archetype of the envisioned terminal	
operator. This operator's task is to collaborate closely with the remote operator and to	
handle any issues on site	21
Table 3: An overview of the derived user stories from the created scenario. Although not	
intended as an exhaustive list, these do allow for the identification of key functionalities to	
support a remote operator. The functionalities developed further are dynamic task	
allocation, continuous risk assessment and progressively disclosing interactions	28
Table 4: Simple case with 6 (non-overlapping) operations	38
Table 5: An additional operation is added to the original scenario.	42
Table 6: Moderately complex scenario.	44
Table 7: Complex example. In red, the changes that will be implemented after the initial	
allocations	47
Table 8: Study set-up	75
Table 9: Overview of conditions	77
Table 10: Mean response times per condition	80
Table 11: Completion times vs condition vs (in-)correct	81

List of Figures

Figure 1: An abstract illustration of the entire Robotic Crane Handling System (RCHS). It	
depicts in the top left the shore control centre, housing several operators who supervise	
several robotic cranes and their operations with the help of a support system. A robotic	
crane consists of the Crane and the 3D World Interpreter (3DWI). These consist of the	
control software and crane hardware respectively, along with the sensor suite and the	
detection algorithms	14
Figure 2: The generalized phases a vessel goes through when loading and offloading	
containers at a port. In each phase, a distinct set of tasks need to be performed to ensure a	а
safe and effective operation. These are in the present way of working done by human	
experts. With the proposed Robotic Crane Handling System (RCHS) these 'experts' can	
become sensors, path planning software, crane control software, detection algorithms, bu	t
also a remote operator supervising the operation	18
Figure 3: Illustration of IDDFS algorithm. It shows how three operations are allocated to	
three operators. At each consecutive row another operation is assigned based on the	
assignment costs	37
Figure 4: Workload per operator over time for the simple scenario. Every increase (initially	
30%, then 60%) signifies one allocated operation. In this specific case all operations are	
evenly distributed over operators and time	39

Figure 5: Simple case where operations vary in their difficulty. The more difficult operations
are assigned to the third operator. This results in a reasonable workload for the third
operator and the first operator having a fairly low overall workload
Figure 6: Simple case with overlapping operations, workload per operator over time. Due to
the overlapping nature of the operations, the second operator takes on a difficult operation
to prevent the third operator being overloaded
Figure 7: Simple case where all operations are difficult. Most operations are allocated to the
third most experienced operator to reduce the average workload. The first operator is not
able to take on any operations due to lack of experience
Figure 8: Simple case with an additional operation. In this scenario, no feasible allocation is
possible. Even in the most optimal allocation, the second operator gets a too high workload
(105%)
Figure 9: Optimal allocation for the moderate example scenario. In this allocation all
operations are evenly distributed over operators and time
Figure 10: Cost outcome of IDDFS related to number of repetitions. Red: percentage of
unfeasible outcomes related to number of repetitions. Blue: average cost of the found
solution (10%-90% quartile with vertical lines). Green: global minimum (found by brute- force)
Figure 11: Cost outcome of IDDFS related to the amount of repetitions. Red: percentage of
unfeasible outcomes in relation to number of repetitions. Blue: Average cost of the found
solution (10%-90% quartile with vertical lines)
Figure 12: Workload for complex example. Left: Workload before the operations are
changed. Middle: Workload after operations are naively allocated without optimization,
showing overload for fourth operator. Right: After allocating the new and changed
operations and changed operations and re-optimizing the existing allocations
Figure 13: An example of a structured graph with nodes for components, requirements,
consequences and actions. It forms a feedforward network how socio-technical system
components affect the operation with actions as effective mitigation strategies. The network
structures the component-level risk of failure assessments into a transparent and usable
framework to support situational awareness recovery 55
Figure 14: An illustration of the IOSS interface levels that progressively disclose more
detailed information or provide a greater overview of all operations
Figure 15: The operator's global view, called their "Fleet View". It lists the allocated vessels
and their operations as well as the expected workload for the operator and that of their
direct team members. The view includes several elements where the IOSS can communicate
any issues or open tasks that require the operator's attention
Figure 16: The design for the pop-up dialogue when a vessel experiences an issue. In this
case a camera malfunction is detected that requires the operator's immediate attention and
action. It has a direct link to the third interface level, that of the situational view
Figure 17: The design for the pop-up dialogue when a new operation is allocated to this
operator or an already allocated operation is reallocated to another operator. This shows
the latter case, and aside from the vessel name it contains the reason why the IOSS did this.

Figure 18: The design for a pop-up dialogue when a task of enough priority is left open for
too long and hinders an operation's efficiency. This shows a case of the latter with a direct
link the local view where the task can be completed
Figure 19: The local view or Vessel View, which shows detailed information about a single
vessel and its upcoming or current operation to which this operator is allocated to
Figure 20: The tab in the Vessel View showing an issue with a camera, presenting the risk
framework used by the IOSS to assess the impact of risks. Here it shows which requirements
cannot be met due to this malfunction, potential consequences of this and the suggested
course of action
Figure 21: The regular Immersive View showing one of the perspectives the operator can
take. It also shows the radial menu for selecting other perspectives. The shaded area in the
distant distance, visualizes the RCHS' sensor range (blue-grey) and objects such as the
containers with a low detection probability are visualized more opaque. Finally, the detected
container IDs are projected on each side. The world is abstracted on purpose, to prevent the
operator from believing that everything is shown, while instead on that what the sensors detected is actually visualized
•
Figure 22: The Immersive View in the case of a risk or calamity. In this case a person was
detected that is too close to the operational area and still moving towards it still. The
operator is drawn to this risk by an arrow showing the direction of the person. In these
cases, the IOSS allows for an immediate switch to the most relevant perspective given the
risk/calamity
Figure 23: The Immersive View allows an operator to directly take action when a risk occurs.
In this case a person is detected moving too close to the operation and the action advised by
the IOSS is to contact the terminal operator. The operator accepted this course of action,
and this shows the proposed message on behalf of the operator
Figure 24: The Immersive View allows operators to request and view the actual sensor feeds
used to create this virtual reality. Due to the limited bandwidth only one or two feeds can be
used, and even then with a low frame rate. Note that the in-picture feed shown here is still
abstracted due to the simulation we use, however in reality this would contain an actual
RGB low-fps camera feed
Figure 25: An illustration of the expected network architecture between the IOSS and each
vessel. The IOSS is expected to house servers to host the various operator stations as well as
to connect to the other system components in various ways. In addition it runs a persistent
and centralized database and a graphical processor for the virtual reality functionality. The
vessel is connected to the IOSS through a simple REST API who sends location data, its
voyage plan and the container loading and offloading sequence. The crane control server is
connected through a push/pull mechanism (i.e., sockets) and pushes the results of any
checks. It also pulls data on when to initiate what phase in an operation from the IOSS. The
3D World Interpreter (3DWI) server is connected in a similar way but transmits high level
detections (i.e., class, position, pose) and any raw sensor streams (i.e., camera feeds) on
request
Figure 26: An illustration of the expected network architecture between the IOSS and each
vessel with a voyage and container optimizer. It is largely the same as without the optimizer,
but here this system is responsible for sharing loading and offloading sequences as well as
voyage information. It thus removes this responsibility from the crane control server and/or

vessel server. However, it would add additional responsibilities to the IOSS, namely to
function as a central proxy between such an optimizer, additional stakeholders and all
vessels. This system was out of the project's scope but has been developed in the EU project
AEGIS independent from the IOSS 68
Figure 27: The conceptual data flow between the IOSS (blue) and a vessel (green), where the
vessel includes the Crane and the 3D World Interpreter components of the Robotic Crane
Handling System
Figure 28: Screenshot of experiment interface75
Figure 29: Real-World video 78
Figure 30: Digital Twin
Figure 31: Point Cloud 79
Figure 32: Completion times versus condition versus (in-)correct
Figure 33: Percentage of correctly detected obstacles

Abbreviation / acronym	Description
EC	European Commission
D3.5	Deliverable number 5 belonging to WP 1.
WP	Work Package
IOSS	Intelligent Operator Support System
DTA	Dynamic Task Allocation
RCHS	Robotic Container Handling System
3DWI	Three Dimensional World Interpreter
SA	Situational Awareness
SAR	Situational Awareness Recovery
IDDFS	Iterative Deepening Depth-First Search
Ro-Ro Ferries	Roll-On-Roll-Off Ferries

List of Acronyms

Executive Summary

The work described in this report is directed towards developing and demonstrating a Robotic Container Handling System (RCHS) that, when mounted upon a hybrid electric feeder vessel, will stimulate and support the use of short sea container services for small ports that have no or limited terminal infrastructure. This innovation fits the MOSES-project aim to significantly enhance the Short Sea Shipping (SSS) component of the European container supply chain by implementing a constellation of innovations including innovative vessels and the optimization of logistics operations.

In most port terminals, moored container ships are loaded and unloaded with shore cranes. In that case it is a crane operator who controls the crane, who knows which container to move, who estimates the distance between the spreader and the container, who reduces speed if necessary, etc. The safety of the operation is ensured by a direct line of sight to the operation, relatively high degree of supervision by others and the creation of a safe and closed operational area. The RCHS research challenge is to bridge the large gap between the current manned way of working and the envisioned operational concept where the RCHS can perform all these tasks unmanned and on its own, i.e. autonomously.

The RCHS consists of a crane, software that drives it, a sensor suite that provides information about the operational area (e.g. the location of a container) to the crane, software enabling autonomous operation, and a shore control centre from which operators remotely monitor and supervise the crane's operation. The innovation described in this report aims to develop an Intelligent Operator Support System (IOSS). This system aims to allow multiple operators to supervise multiple autonomous operations by exception to ensure their effectiveness and safety. This many-to-many concept assumes a stage in human-automation collaboration design where supervision of maritime autonomous surface ships is not permanently required anymore. For instance, in this operational context operators may need to intervene only in situations that are beyond container handling itself, e.g. to deal with a missing container, or people or vehicles that are in the way.

One of the challenges we addressed in this context is to balance the task assignments and support functions over the operators to ensure the cognitive task load matches the operator's mental capacity. Also, human attention is limited and operators therefore must constantly shift attention resulting in moment-to-moment fluctuations in situation awareness. For this, we developed the concept of continuous risk assessment to initiate the process of operator situation awareness recovery. Furthermore, the many-to-many ratio between supervising operators and autonomous ships implies that operators will not be able to supervise all ships in parallel. For this reason we applied progressive disclosure technology for the IOSS

interface design. It entails a three-layer interface that progressively discloses more information about the operations an operator supervises and enables increasingly more complex and involved control actions. The interface design provides an overview of the entire fleet, a localized overview of the status of a single ship, and a situational view providing an entirely immersive view using virtual reality on a single situational perspective of a ship.

For the latter, the immersive view, we build a digital twin as a virtual reality environment in which the operator can freely explore the sensor data the ship acquires. Given the fact that a virtual reality application in this context is new we additionally conducted an online experiment to determine what level of information richness is required for a remote operator to be able to understand the situation and to intervene in a container (off)loading operation. The main conclusion of the experiment supports the use of a digital twin in this context.

Based on an internal demonstration of the Intelligent Operator Support System architecture, we can conclude that we have succeeded in developing an operator support environment which is fully functional for shore control centres. It can be applied in centres in which multiple operators need support in guiding multiple autonomous processes, in ensuring safety within the local operational area, and to intervene if the situation calls for it. With this innovation, we have taken an important step towards a support concept that can be used generically for the supervisory control of other types of autonomous systems, such as autonomously sailing ships.

In order to the RCHS to function as a system-of-systems it is necessary that the components can exchange data. For this purpose, the IOSS is provided with a backend architecture that enables information exchange with other system software components. The integration of the subsystems will be realized in the pilot demonstration phase of the MOSES-project (WP7, task 4).

