

autoMated vessels and supply chain
Optimisation for sustainable short
SEa Shipping

Konstantinos Louzis
Researcher, PhD Candidate,
School of Naval Architecture & Marine Engineering

National Technical University of Athens

Facts about the MOSES project

Duration: 01.07.2020 - 30.06.2023
 (36 months) - extension
 31.12.2023 (42 months)

o Budget: 8 million €

Consortium: 17 Partners

Coordinator: NTUA

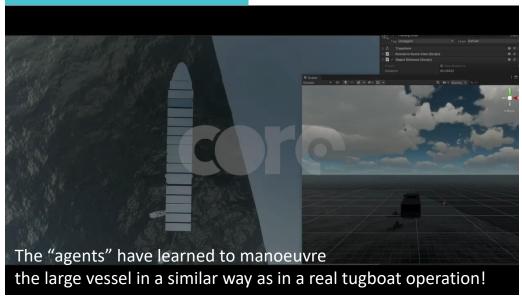
MOSES aims to...

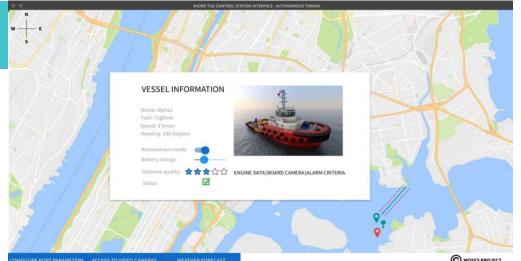
Containerised cargo

Create sustainable feeder services from large container terminals to small ports with no infrastructure to replace trucks on Ro-Ro ships

The MOSES concept

The MOSES Use Cases Northern Case France Romania Bosnia and Herzegovina Serbia Варна **Western MED-Spain** Bulgaria Decongest truck transport traffic in Valencia port and connect it to **Eastern MED-Greece** Sagunto and Gandia satellite ports Decongest Piraeus container terminal and integrate small Greek ports into the container supply chain Gibraltar Malta


Tunisia



MOSES AutoDock System

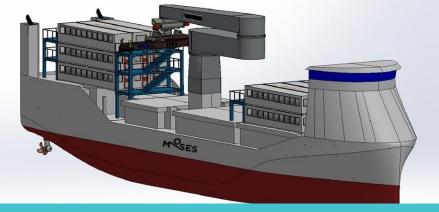
Autonomous tugboats

Shore Tugboat Control Station

Automated Mooring

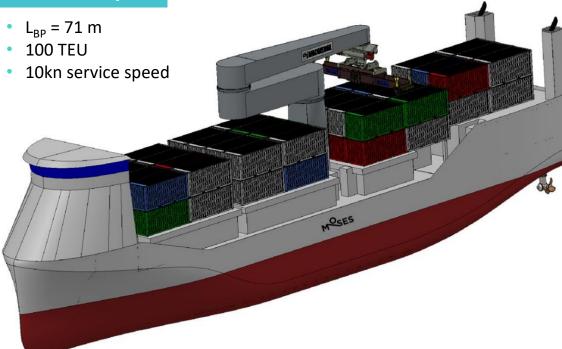
Prototype innovations:

- Small-scale
- Surge motion control
- Energy harvesting
- Communication with tugboats


MOSES Innovative Feeder

Greek concept I

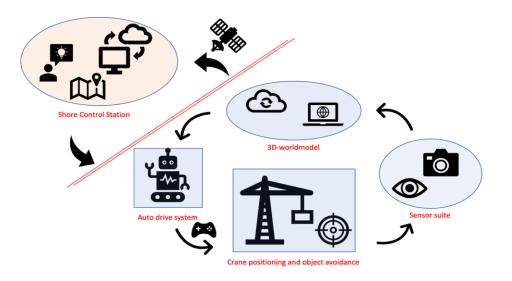
L_{BP} = 80 m180 TEU


10 kn service speed

Modular concept design for pax transport

Innovations:

- Sustainable propulsion (Hybrid methanol ICE + batteries, Full electric)
- Azimuth thrusters for enhanced manoeuvrability
- Automated cargo-handling, as first step towards higher autonomy

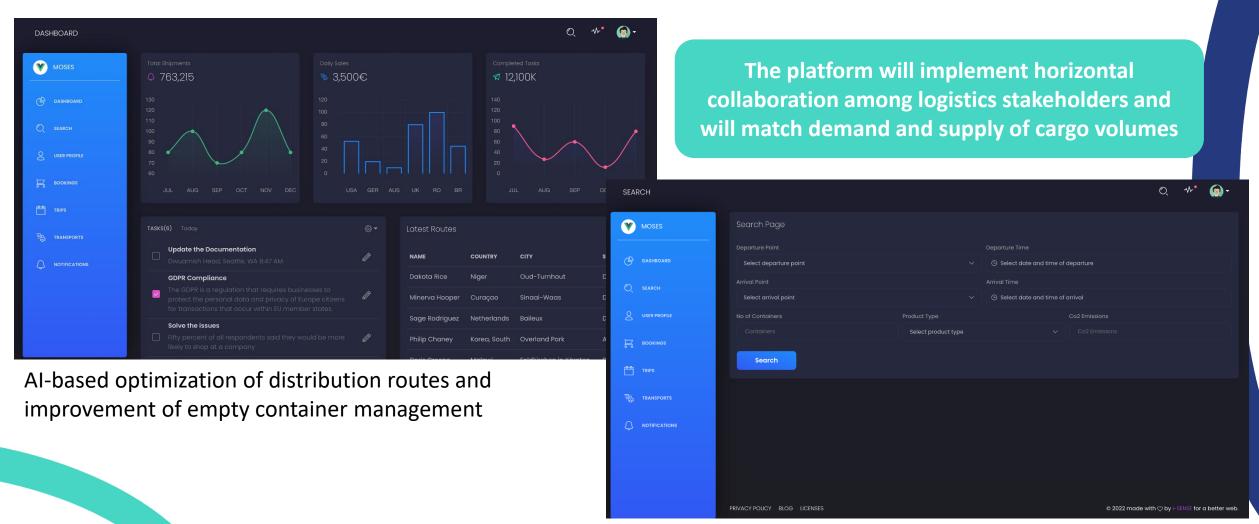

MOSES Robotic Cargo Handling System

Automated Crane

- Compensation of pendulation (ship motions, weather conditions)
- Identification of container to load

Intelligent Operator Support System (IOSS)

- Enabling local situation awareness anomaly detection
- Robot self awareness in problem detection
- Control Intelligence
- Dynamic task allocation (One-to-many)
- Risk assessment for problem solving



MOSES Matchmaking Platform

Pilot Demonstrations – Proof of Concepts

Pilot demonstration #1

- Autonomous "tugboat swarm" and automated docking
- Denmark

Pilot demonstration #2

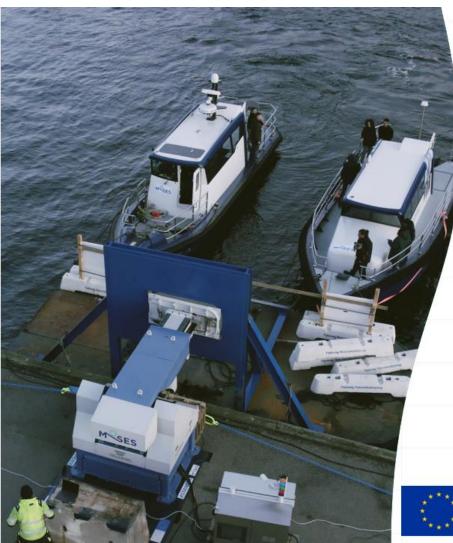
- Dock-to-dock, fully autonomous operation of the MOSES feeder
- Netherlands

Pilot demonstration #3

- Autonomous operation of the Robotic Container-Handling System and remote monitoring with the IOSS
- Sweden, Netherlands

Pilot Demonstration results

- The pilot demonstration results will provide input to the sustainability framework developed by MOSES
- The objective is to evaluate the sustainability and added value to SSS of the MOSES Innovations, based on specific criteria (incl. cost, environment, safety etc.)


													0															
		Fill cyan cells & click on the solve button		# Experts		4 # Alternati		rnative	2	# Attributes		8	N. C.	6K0	MULTI-ATTRIBUTE MULTI-ASSES DANAOS SOLVER DrC Sofia Ar									x1		x2	х3	
	Attribu	ites				10	١		20	E		30		E4	40						V	Veighted		3 0,0.	56 🗸	0,944	② 0,000	Fuzzy
Cod	Description	Asses	Туре	BAU	MOSES		BAU	MOSES	5	BAU	MOSES		BAU	MOSES	E1	E	E2	E3	E4	wi	x1	x2	хЗ	0,1	20 🥝	0,880	0,648	Crisp
A1	COST	0	cost	900	500		900	500		900	500		900	500			2	9	9	0,002	-0,333		-0,090	Give	your (choice to	find weigh	ts of
																	10	e	enter weight o		-0,243	-0,090		1	2	3	L	
A2	ENVIRONMENT	LS	Benefit	VL	VH		VL	М		VL	M		VL	VH		1	1	a	attribute as nu		0,067	0,052	expe		is	attrib	utes	
																	10		linguistic In next line ente			0,067	0,051	·····				(
A3	SAFETY	LS	Benefit	VL	VH		VL	L		VL	M		VL	VH		1	1				ter yr el for the	0,066	0,034		III.	1		<u></u>
																	10	16		0,070	OJOEE	0,066	0,037	-				
A4	COMPLIANCE	LS	Benefit	L	Н		VL	М		VL	M		L	Н		1	1	1	1	0,039	0,021	0,032	0,026	- Fu	ızzy v	d sum ord	ler	
A5	REGULATION	LS	cost												1		7	4	1	0,039	0,021	0,033	0,024	-	4,00			
				L	M		VL	M		L	L		M	L	1	1	10	10	10	0,097	-0,080 -0,073	-0,056 -0,064	-0,085 -0,083	-	2,00			
A6	HEALTH	LS	cost	8.4	M		VL	M		VL	М		,	М		4	4	10	10	0,206	-0,073	-0,064	-0,083	-	ā 0,00			
				IVI	IVI		VL	IVI		VL	IVI		L	IVI	1		7	3	5		-0,142	-0,130	-0,174	. ii				
A7	SOCIAL VALUE	LS	cost	M	VH		Н	М		Н	М		VH	М		1	1	1	1	0,070	-0,047	-0,052	-0,015	. <u>£</u> -	2,00			
				191	***		<u>''</u>							***	1		9	8	5		-0,044	-0,055	-0,016	-	4,00			
A8	BUSINESS	LS	Benefit	М	VH		VL	М		L	м		VH	Н		1	1	1	1	0,061	0,044	0,042	0,042		6,00			
	VALUE														1		8	7	4		0,038	0,048	0,041	-	0,00		Oprions	
													Mic	crosoft Ex	cel					X	-0,479	-0,235	-0,211	-				
				ļ			†			1				CIOSOIT EX	cei			^			-0,442	-0,293	-0,206					
										an	d the winn	er is X2 An	d the	ie FUZ	ZY win	ner is x	x2											
											ОК																	

MOSES Exploitation Workshops

Exploitation workshop on

AutoDock System

01 December 2023

Online, via Zoom platform

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 861678. The content of this document reflects only the authors' view, and the Agency is not responsible for any use that may be made of the information it contains.

www. moses-h2020.eu

MOSES project2020

@mosesproject20

MOSES Project

Thank you for your attention!

If you have any questions or require further information, please contact me:

Konstantinos Louzis (klouzis@mail.ntua.gr)

National and Technical University of Athens - NTUA

