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ABSTRACT

Autonomous sailing is seen as one of the possible solutions to cope with the decrease in qualified personnel
and to minimise the risk to humans and ships in challenging conditions. Autonomy is not limited to sailing
a vessel safely through the seas, but it also includes docking the vessel. A feeder vessel distributes cargo and
spends arelative large percentage of its time on (un)docking. Automating this part of the operation is expected
to help save on resources. The objective of this work is to automatically approach a dock with an underactuated
vessel. It comprises of both the design of a time-dependent trajectory, and a controller that can track this
trajectory. The solution is tailored for our 71 m long feeder vessel designed for the eu-h2020 Moses project. The
focus is on approaching the dock from cruising speed until the speed of the vessel is near-zero. The result of
the study is a high-fidelity time simulation that shows the behaviour of the vessel in combination with the
control system when it approaches a dock. The simulations show that the ship can approach the dock with
coupled azimuthing thrusters to a speed when the bow thrusters become effective. The vessel then becomes
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fully actuated and can safely dock with its dynamical positioning system.

1. Introduction

Autonomous sailing is seen as one of the possible solutions to cope
with the decrease in qualified personnel and to minimise the risk
to humans and ships in challenging conditions. Autonomy is not
limited to moving the vessel safely through the seas, but it also
includes docking and undocking the vessel. Feeder vessels collect
shipping containers from different ports and transport them to cen-
tral container terminals where they are loaded to bigger vessels, or
vice versa. Container ships with a capacity below 3000 TEU, with an
average between 300 and 1000 TEU are typically called feeder ves-
sels. Such vessels spend a relatively large percentage of their time on
(un)docking compared to a seafaring cargo vessel. Automating this
part of the operation, therefore, can save on resources.

The objective of this work is to automatically approach a dock.
The focus is on approaching the dock from cruising speed to a
near-zero speed, where the dynamical positioning system ought to
take over for a fully autonomous docking operation. This is deemed
the most critical part of the docking manoeuvre as the ship has to
decelerate and steer without bow thrusters and hence is underactu-
ated, that is, has less actuators than degrees of freedom. The study
comprises the design of a time-dependent trajectory, as well as a con-
troller that can track this trajectory. We aim to have the controller as
simple as possible such that the parameters identification and tuning
can be done in a planned experiment. The solution is tailored to our
71 m long feeder vessel designed for the EU-H2020 MOSES project
(Moses 2023). The vessel has two azimuthing thrusters and two bow
tunnel thrusters. A schematic representation of the ship used in this
study is shown in Figure 1.

Approaches encountered in the literature to automatically dock a
vessel can be broadly divided into Optimal Control Problem (ocp)
approaches and Guidance-Navigation-Control (GNC) approaches.
Initial work on ocps calculated a (time-dependent) optimal trajec-
tory and the accompanying actuator commands at the beginning of
the run only (Djouani and Hamam 1995; Ohtsu et al. 1996). The

pose of the ship had to be equal to the initial condition of the ocp
for the actuator commands to be correct. However, this pose is only
known during the actual sailing, and solving the ocp at that mea-
sured pose took too much time to use in real-time (Ahmed and
Hasegawa 2015; Okazaki and Ohtsu 2008). A solution to circumvent
this issue is pre-solving a set of ocps with different initial condi-
tions, and interpolating between them during the actual sailing. The
ocp approaches were extended to obstacle avoidance in the harbour
and/or to avoid collisions with other ships (Liu et al. 2020). With the
increase of computational power, one does not need to interpolate
between pre-calculated solutions from the beginning of the run; the
ocP can be solved at the actual pose. This eventually leads to Model
Predictive Control (MPc), where the ocp is not only solved at the start
of the approaching phase, but it is solved at every time step (Mar-
tinsen et al. 2019; Li et al. 2020; Ravikumar et al. 2020). Finally, the
optimal trajectory that results from the ocP can also be calculated at
a low sampling frequency, and then tracked at a high sampling fre-
quency with a vehicle controller. The vehicle controller can in its turn
be a Mmpc (Mizuno et al. 2015), or another type of controller (Bitar
et al. 2020; Martinsen et al. 2020).

GNc,on the other hand, splits the guidance and the vehicle con-
trol into two problems, where this is one combined problem in ocp.
Guidance guides the path of a ship towards a given point, which in
general may be moving (Shneydor 1998). The output of the guid-
ance is hence a set of variables that the vehicle controller can track.
This would generally be heading, or course, and speed for an under-
actuated ship. The guidance for automatic docking typically consist
of a trajectory or path, either automatically generated or specified
by a user, and a guidance law. The guidance law, such as Line-Of-
Sight (rLos), Pure-Pursuit (pp), or Constant-Bearing (cB), is then
used to provide setpoints to the vehicle controller such that it tracks
this trajectory to the dock (Fossen 2021).

Tzeng et al. (2006) and Piao et al. (2019) provide a path manually
by placing the final waypoint at a safe location near the docking loca-
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Figure 1. Feeder vessel used in this study.

tion where the ship should come to standstill. A Los guidance law is
used to steer the ship there. A smoother trajectory is obtained by Liao
etal. (2019). They provide a path by specifying a set of waypoints on a
Bézier curve that ends at the safe location near the dock. The velocity
setpoint is a function of the distance to the docking location in these
references. Next to placing the waypoints on a smooth curve, they
can also be placed on a trajectory calculated from an ocp (Okazaki
and Ohtsu 2008), or the curve itself can be used directly with a Los
guidance law (Sawada et al. 2021).

Both ocp and GNc approaches have been shown to give good
results in literature. In the present work, the GNc approach is
employed due to its simplicity of implementation and the low com-
putational need. The split in functionality in GNc allows for future
modification of a single element while retaining others.

For the design and evaluation of our docking solution we employ
two different models. A simulation model is used to evaluate the
performance of the controlled system. It is based on manoeuvring
coefficients and is available in our in-house simulation environ-
ment. The manoeuvring coefficients were determined through crp
calculations. This simulation model is too complex to design a con-
troller with, so a simplified control model is deduced from it. Both
simulation and control model are treated in Section 2.

Guidance is treated in Section 3. First a trajectory is generated
that provides the latitude and longitude in time. However, at cruising
speeds the bow thrusters of the ship are not available and we cannot
track all the degrees of freedom simultaneously. A Constant-Bearing
guidance law is used to convert the trajectory setpoint to a required
course and speed. This guidance law is selected as it not only uses
the instantaneous position of the trajectory but also its velocity. The
velocity is fed forward to the velocity required of the vessel and hence
allows to track the target without a position error. An example usage
of cB is when two ships sail next to each other in a replenish oper-
ation (Skejic et al. 2009). As shown in Fruzzetti et al. (2022), other
guidance laws might be considered for tracking a target. Next to the
setpoint for course and surge speed, all their derivatives can be pro-
vided by the guidance. This, in its turn, can be used to include our
knowledge on ship motions in the feed forward part of the controller.
The design of the controller is treated in Section 4. The designed
controller is tested on the detailed simulation platform to evaluate
its performance in Section 5. The results are elaborated upon in the
same section. Conclusions are drawn in Section 6.

The main contribution of this paper is considered to be the com-
bination of the analytic trajectory with the cB guidance law that
also provides all the derivatives needed to use the ship knowledge
in a feed forward controller. The accompanying feedback controller
could then be designed with linear tools to stabilise the ship and reject
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disturbances and model uncertainty. The GNc could bring the ship
to a near standstill at a safe pose close to the dock. This paper is an
extended version of the work previously presented at the iSCSS 2022
conference (de Kruif 2022b).

2. Ship motion model

Two models are used in this study. First, a detailed numerical model
that is available in our simulation environment (MARIN 2022). This
model is used in all the simulations and is hence called the simulation
model. Second, a simplified control model is used to design a con-
troller on. It is deduced from the behaviour of the simulation model.
This is equivalent to how a model would be obtained through system
identification on a real vessel.

2.1. Simulation model

The simulation model is assumed to be given and is treated in an
earlier publication (van Daalen et al. 2023). The elements included
are:

e Hydrostatic forces that are calculated based on the 3D hull shape.
There are linearised because we only have small roll and pitch
angles.

e Hydrodynamic forces such as calm water resistance and manoeu-
vring forces. These are first simulated by means of cFp computa-
tions, and then approximated by a set manoueuvring coefficients
for a time-domain simulation.

e Wave radiation forces that are included as frequency dependent
mass and damping.

e Wave excitation of the vessel. This is calculated by linear
radiation-diffraction theory. It results in first and second order
wave loads.

e Four quadrant propeller characteristics for the azimuthing and
bow thrusters are used to relate the force and torque generated
based on their RPM.

The equations of motion are solved for all 6 degrees of freedom
and contain coupling between them.

2.2. Control model

The velocity and course are considered decoupled for the control
model in this work. It is assumed that both variables change suf-
ficiently slow, and are individually controlled tightly enough. The
velocity is considered a parameter in the course model. As long as



the drift angle is limited, this assumption will hold. If the (course
unstable) ship will start to run out of its rudder, the velocity will drop
quickly, and this assumption will no longer hold. The identification
of the course model is done in two steps. First the rate-of-turn is iden-
tified as a result of lateral forces, and then the course is identified as
a result of the rate-of-turn.

2.2.1. Rate-of-turn model
The ship used in this study is course unstable. This behaviour can be
described by a first order Nomoto model (Neuffer and Owens 1991):

K

K
= T(a+,3r2)r+—Fy. (1)

T

Here the rudder angle has been replaced by the lateral force F,. In
this equation r denotes the rate-of-turn,and @ < 0,8 > 0,K/T > 0
are parameters to be determined. The values of «, 8 can be found by
fitting them on a Bech’s reverse spiral, while the value of K/T is found
by the step response around the F, = 0 N equilibrium.

The results of the identification simulations are shown in Figure 2.
Figure 2(a) shows the relation between the rate-of-turn and the lat-
eral force. Running the simulation for different fixed surge velocities
results in a set of curves. The top of Figure 2(b) shows the fit of the
Bech’s reverse spiral for u = 2.5 m/s. The grey line is from the simu-
lation, the orange line is the fit. The fitted parameter values of o, 8 are
presented in Table 1. Note that both « and S are speed dependent.

The bottom part of Figure 2(b) shows the response to step changes
on the lateral force at the equilibrium F, = 0 N with a solid grey
line. The dashed line shows the 1 — exp(—1) = 63% change from the
minimum to the maximum amplitude from which the time constant
of the first order system is deduced, which is directly related to K/T.
When this time constant is used to estimate the response at t = 1500
seconds, then the orange line is found. For velocities below 1 m/s a
first order model does not adequately describe the response.

The linearised transfer function of (1) for r = 0 rad/s is found as:

r  K/T
F, ~ s+aK/T @)

s indicates the Laplace variable. The pole corresponding to the lin-
earised system is given in Table 1 and the positive sign shows the
unstable behaviour of the system at this operating point. The loca-
tion of the pole changes to the left-half plane if we linearise around
an increased rate-of-turn.
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Table 1. Parameter values identified for the three parts of the control model.

Model Parameter Pole/zero
rate of o= —84710°.u Pr—o = 9.27 1073 .u
turn B =48410°/u
K/T =1.0910"8
course a=978410"3.u p=-97810"3.u
b= —0512 71 =-7621073.u
c=-10.1/u 2 =31910"2.u
speed m— Xy =3.310°
Xyju) = —1506

Note: The right-most column indicate the poles and zeros for the linearised transfer
function.

2.2.2. Course model
The relation between the course and the rate-of-turn is based on the
work of Yu et al. (2008):

x=—ax +ay+ (1 +by +cy - k =—ax + by +cifr, (3)

in which x denotes the course, { the headingand x = x — ¢ the slip
angle. a, b, ¢ are parameters. In the cited reference the parameter c is
not present. However, if we apply a lateral force, the vessel will move
to the side first, and only when it has rotated, then the surge speed
will change the course to the other direction. At lower speeds, this
effect is significant. This non-minimum phase behaviour is caught
when ¢ # 0, and is shown in Figure 3.
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Figure 3. The course with fixed surge speed u = 0.5 m/sand a step on the reference
rate-of-turn.
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Figure 2. Identification of the rate-of-turn model from a detailed numerical model. (a) Bech’s reverse spiral test and (b) fit of the simulations at u = 2.5 m/s.
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The parameters values were identified in a closed loop simulation
in which the rate-of-turn was controlled. The rate-of-turn setpoint
was changed stepwise. By means of a least squares fit the relation
between the slip angle and rate-of-turn in (3) was calculated. The
values are shown in Table 1. Figure 3 shows the course when the
rate-of-turn reference value is changed at f = 100 sec. The non-
minimum phase behaviour of the course due to the lateral force is
clearly present at this low velocity. Figure 3 shows that the simula-
tion and the approximation are nearly identical for this velocity. The
transfer function of (3) is calculated as:

X

r

s>+ (1+b)s+a (s + Ditgs+ 1)

(4)
s(s+a) s(tps + 1)

in which we have used the knowledge that the transfer from heading
to course is equal to one when sailing straight. The pole and zero loca-
tions are the inverses of the time constants 7. Their values are given in
Table 1. The second zero is in the right-hand plane and it approaches
the imaginary axis for low speed. This zero limits the bandwidth of a
course controller.

2.2.3. Speed model
The manoeuvering model for the surge speed, with the hydrody-
namic cross coupling removed, is given as:

(m — X)) = mvr + Xy ulu| + Ey, (5)
where m gives the rigid body mass, X the added mass, X, the
quadratic damping, u, v, r are the velocities in surge, sway and yaw

direction. F, denotes the longitudinal force. The parameter values are
again given in Table 1.

3. Guidance
3.1. Trajectory generation

An optimal path to approach a dock can be determined as ocp. How-
ever, solving an ocp can be computationally demanding and might
be difficult in real-time applications. In de Kruif (2022a) it has been
shown that Bézier curves can be used to generate smooth trajectories
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and their corresponding time derivatives. The acceleration and rate-
of-turn values are limited when the trajectory is not too challenging,
but must be checked afterwards. No limits on the actuators can be set
beforehand.

Before the approach to the dock is started, the vessel is assumed
to be sailing from waypoint to waypoint. When the ship is at a dis-
tance of around 13 ship lengths, which is slightly above 900 metres
for our feeder vessel, the approaching phase is initiated. This distance
is found to be a good distance to start the approaching phase of the
operation: A larger distance would have the ship sail straight to this
distance, after which the same trajectory results. If a shorter distance
would be used, the total duration of the operation would take longer,
or it would even become infeasible to dock at all (de Kruif 2022a).

At the initial position, a cubic Bézier curve is constructed that
starts at this position, and ends at the required position close to the
dock. Refer to Appendix 1 for additional information and symbols
used. The initial and final position define the values for control points
P, and p;. The tangent at p,, is equal to the vector from p, to p; and is
set to the initial course. The length of this vector is set to Iy = 0.6D,
which closely matches (Sawada et al. 2021), and fully specifies p,. D
is the distance to the dock. The value for p, is set such that the vector
from it to p; equals the final heading. Through a one-dimensional
numerical optimisation the length of this vector is set to minimise
the rate of turn.

The resulting Bézier curve is a path in space only, and is dependent
on its path variable h. A relation between the path variable and time
makes the path a time-dependent trajectory. If we relate the path vari-
able to time as h = 27“09 2- Z‘TS) in which t denotes time, and ug the
initial velocity, see Figure A1, then we will decrease the velocity from
ug to zero. An example trajectory is shown in Figure 4. The trajec-
tory provides us with a target position p; = [pix, pt)y]T and velocity

vi = [Vex vt,y]T in earth fixed coordinates.

3.2. Constant bearing guidance law

A cB guidance law is used to provide a setpoint to the vehicle con-
troller such that the vessel will converge with the target, that is,
the current point of the trajectory. In guidance texts, our own ves-
sel is often referred to as interceptor. The setpoint velocity vector,

x10~?2
4 1.0
— u [m/s]
9 - r [rad/s] | 05 @
T
g
0 - 0.0 —
~
—-0.5

)
T
£
L 1 =

400
time [s]

600 800

Figure 4. Generated Bézier trajectory. (a) shows the path, while (b), (c) show the velocities and accelerations for the surge velocity, u and rate of turn, r respectively.



Vsp = [Vspox> Vspy] T, for our vessel is given as Breivik (2010):

p
I

Voo =W+ Va=Vi+ Y= with p = p, — p. (6)

llp

In this equation, the velocity setpoint is composed of the target veloc-
ity and a correction velocity, v,, that steers our vessel to the current
position of the target. The velocity to the target has magnitude y,
and is in the direction of the difference of the target position p, and
our present position p. The speed and course setpoints to the vehicle
controller, usp and ysp are obtained from this:

Usp = ||Vsp||2> Xsp = arctany (VSP,)/’ Vsp,x)~ (7)
The value of y results from the distance between the target position
and the actual vessel position:

PP

Jo'p+ oy

The parameter Up,ay is the maximum speed by which our vessel is
moving toward the target point, and A the distance at which Uy,
is halved. U,k should be smaller than the velocity at which the bow
thrusters become effective and the fully actuated control system takes
over to avoid sudden course changes. These sudden changes occur if
the ship overtakes the target, and the correction velocity, v, becomes
larger than the target velocity v;. The course in (7) then changes
quickly. This can be avoided by limiting Upy,x. However, setting Upax
small makes the convergence slow. The value of A is increased until
a smooth operation is obtained. The setpoints’ time derivatives are
provided in Appendix 2.

Y = Unax (8)

4. Control

The vehicle control calculates longitudinal and lateral forces such
that the measured surge velocity and course match their setpoint as
good as possible.

4.1. Course control

The controller to keep course is designed as a cascade controller. This
approach is used so that the non-linearities and the unstable pole of
the inner loop can be addressed first. The resulting inner loop then
becomes stable, which allows for a simple outer-loop design. A single
loop compensator with an unstable zero and pole would otherwise
lead to a high sensitivity peak (Skogestad and Postlethwaite 2007). An
overview of the cascade controller with the system model described
in Section 2 is shown in Figure 5.
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4.1.1. Rate-of-turn controller

The rate-of-turn controller consists of a feedback controller and a
feed forward controller. The feed forward controller calculates the
lateral force based on the set point for the rate-of-turn, while the feed-
back controller compensates for deviations. The feed forward signal
can be calculated directly from (1):

T.
Cri: Fy=argp + ,Brg’p + s 9)

In this, and following equations, the subscript ‘sp’ indicates the set
point value. The feedback controller is based on (2). When the loop
is closed with:

Crpo : Fy = Kg(rep — 1), (10)
we obtain the closed loop transfer function:
K4K/T
r # (11)

re  s+K/T(a+Kag)

A feedback gain Kg > —a will stabilise this system, as also found in
Neufter and Owens (1991). With this stabilised inner loop, the outer
loop will be designed.

4.1.2. Course controller
The linear transfer function from the required rate-of-turn to the
course is a series connection of (4) and (11):

L _ (t215+ 1)(1’225“1‘ 1)
Tsp s(tps+ 1)

K4K/T
s+ K/T(x+Ky)'

(12)

If we design our feedback controller to cancel the stable pole at 7,
and the stable zero 7, and use a gain of K, to close the loop:

(XSP - X)> (13)

then we get the characteristic equation:
f(s) =5 +5(K/T(a + Kqg) + 72, KyKaK/T) + KpKaK/T. (14)

The poles can be selected such that the system mimics a second order
system with natural frequency wy, and relative damping ¢ if the gains
are selected as:

Kd = wn(T/K)(2§ - Tzzwn) -,
K, = (T/K)(wp/Ka).

(15)
(16)

The value of Ky should be larger than —« to stabilise the inner
loop, which is always true when using this equation. We select v, =
—1/1;,,and in general we set { > 0.8. Since we relate the bandwidth

Cx,ff

| Cr,ff

Xsp

Cx,fb

Cr,fb

Figure 5. Control setup for the course control. The ship response from lateral force, Fy to rate-of-turn r is indicated by block P, (1). The ship response from rate-of-turn to
course x by the block P, (3). The controller for the rate-of-turn C; contains a feedback (fb) and feed forward (ff) part. The inner loop is depicted in the gray box. The rate-of-turn
setpoint is provided by controller of the outer loop C, . This controller calculates a rate-of-turn setpoint rs such that the course set point xsp is tracked. It consists again of a

feedback and feed forward part. The ‘s’ denotes a differentiation.
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to the location of right-half-plane zero, we decrease the bandwidth
for lower velocities. This is needed, as this zero poses a fundamental
bound on the bandwidth (Skogestad and Postlethwaite 2007).

The feed forward controller is the inverse of the stable part of the
transfer from the required rate to the course:

s(tps+ 1)

Note that this transfer function is not proper, but we have access
to the analytic time derivatives of the reference signal, so it can be
implemented.

4.2. Speed controller

The linearised system of (5) is an open integrator. A single feedback
gain is used as feedback controller. Integral action could be used, but

Cooff + 1sp = 541 Xsp: a7) this will only be advantageous for constant speeds, which will not
21 y g p
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Figure 6. Simulation showing the approach to the dock of the underactuated feeder vessel. In subfigure (i) till (iv) the dotted gray lines indicate the original Bézier trajectory,
the dashed blue lines show the setpoints calculated by the cb algorithm and the solid orange lines are the simulated responses. Subfigure (v) shows the calculated forces of
the controller at the mean location of the azimuthing thrusters. The solid black lines in the insets are the velocity vector setpoints resulting from the b guidance law (6). (a)
simulation results without wind and wave disturbances and (b) simulation results with a wind speed of 5 m/s, and waves with H; = 0.5 m from beam direction.



occur during the approaching phase. The forces due to the required
acceleration and damping are fed forward. The equations for the
controllers are:

Cutp: Fx = K(”sp —u),

Cufi : Fx = (m — Xﬁ)asp - Xululusp|usp|~ (18)

5. Results

The detailed numerical model (Section 2) was used to test the
behaviour of the control scheme. The control forces were mapped
to the coupled azimuthing thrusters, and their limits were respected
in the simulation. The identified parameters were used in the feed
forward controller. The bandwidth of the course feedback controller
was scaled with the surge velocity, and it was capped at a maximum
of w, = 0.2 rad/s. In order to avoid overshoot, a relative damping
of ¢ =1 was used. The maximum velocity with which the vessel
approaches the target position was used to select the value for the
parameter Upay = 0.25 m/s. As argued before, this value should
be lower than the speed at which the bow thrusters would become
effective, and the controller would become fully actuated. The value
A = 15 m was found by increasing its value until a smooth motion to
the target position was realised. The static feedback gain for the speed
controller was set to K = 10° N/(m/s), which results in a closed loop
bandwidth of w = 0.03 rad/s.

Results of the simulation are shown in Figure 6. The environ-
mental forces (wind and waves) acting on the vessel are shown in
Figure 7. Statistics for different wind disturbances are shown in
Table 2. Figure 6(a) shows the results without any disturbances, while
Figure 6(b) includes wind speed of 5 m/s and waves with a significant
wave height Hs = 0.5 m/s, and a period of T;, = 12 sec in the direc-
tion of the dock. The waves hit the ship sideways when it was at the
dock. The Bézier reference trajectory is shown by the dotted grey line
in the figure.

Figure 6(a)(i) shows the vessel path as well as the reference
path. The maximum tracking error, emphasised at the zoom-inset,
is approximately 16 m. In this part of the trajectory there is a large
curvature with a surge speed above 1.25 m/s, and the vessel is drift-
ing significantly. Even though a feed forward controller was used to
improve tracking behaviour, the differences in the detailed numerical
model and our approximate control model result in tracking errors.
In the final straight approach to the dock, these tracking errors are
nullified by the feedback controller.

In the inset the black lines indicate the target velocities that stem
from the cB algorithm. It shows that the required velocity direction
is not only targeted to minimise the current cross track error, but it
also incorporates the actual trajectory velocity.
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The course and heading are depicted in Figure 6(a)(ii), while
the rate-of-turn in shown in Figure 6(a)(iv). The dotted line shows
the tangent of the Bézier curve, while the blue dashed line shows
the output of the cB algorithm. These are close together, but there
is a small difference in order to move the vessel in the direction
of its target. The orange line is the heading of the simulated ves-
sel. The heading will be different from the course, especially at
higher rate-of-turns. This can be seen at t ~ 300 sec when com-
paring (ii) with (iv). At the end of the simulation the heading is
moving away from the course, even with a required rate-of-turn
of zero. This occurs at a low speed u < 0.5 m/s. The bandwidth of
the course controller at this speed needs to be low due to the min-
imum phase behaviour, see Figure 3. If the cB algorithm tries to
move the ship to the correct location, the ship will turn due to the
location of the azimuthing thrusters. This is not problematic, as at
these speeds the bow thrusters are effective and can counter the
rotation.

Figure 6(a)(iii) shows the tracking of the speed. The maximum
error found was found to be approximately 0.2 m/s, while this error
decreases again when approaching the dock. The control forces are
dominated by the forces that result from the feed forward con-
troller, not shown here. Figure 6(a)(v) shows the requested forces.
Around t =~ 250 sec the longitudinal and lateral forces change direc-
tion. The azimuthing thrusters can only turn at 12 degrees per
second. The effects of this slow rotation can be observed at the
Zero-crossing.

Figure 6(b) shows the same signals but with wind and wave dis-
turbances. The course realised is slightly changed due to the wind. A
further increase in wind speed increases this effect. The effect of the
waves is significant. They approach from the beam, and this intro-
duces oscillations around the course. As the ship is course unstable,
the gain acting on the rate-of-turn has to be rather large to stabilise
the course, see Section 4.1.1. This results in large lateral forces as seen
in Figure 6(b)(v). The azimuthing thrusters are not able to rotate fast
enough to these force requirements. A notch-filter to selectively omit
the wave frequencies can mitigate this problem (Marshfield 1991),
among other filter options.

Finally, Table 2 provides some statistics on the tracking perfor-
mance of the controller during the approach. A wind of 8.85 m/s was
used in the simulations from different directions. The wind speed in
the port of Mykonos is below this value for 70% of the time. No cur-
rent and waves are used in these simulation. The smallest error at the
end of the trajectory is found when the final approach of the ship is
against the wind. The worst performance keeps the maximum devi-
ation to the track smaller than half of the ship’s length. At the end of
the approaching phase, the pp system should bring the ship slowly to
the dock.
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= 0 2 g
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£ = 0.0 g
= g g
h=1 2 2
2 34 = g
3 S
T T —-1.5 T T T T
0 250 500 0 250 500 0 250 500
time [s] time [s] time [s]

Figure 7. Environmental forces acting on the ship. The ship motions are provided in Figure 6(b).
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Table 2. The distance to the Bézier curve for wind from different directions with a
windspeed of 8.85 m/s.

direction Prmax (M] Prms [M] P [M] Peng [M] Uend [M/s]
no dist. 16.2 8.2 2.1 12.5 0.06
0° 17.3 12.8 16.4 238 0.10
45° 31.0 16.1 10.1 9.8 0.14
90° 326 15.5 9.5 8.5 0.14
135° 26.8 14.9 22.1 17.6 0.13
180° 315 12.2 316 23.0 0.13
225° 12.6 8.4 11.8 234 0.12
270° 222 9.7 224 20.2 0.10
315° 19.9 10.9 14.0 27.5 0.10

Note: The port of Mykonos has a wind speed below 8.85 m/s for 70% of the time. The
columns indicate, respectively, maximum distance to the path, ms distance to the
path, distance to the path when the bow thrusters become active atu = 0.25 m/s,
and the distance to the path at the end of the trajectory. The right-most column
shows the remaining velocity at the end of the phase. The first row is without
disturbances.

6. Conclusions

In this study a controller to approach a dock was designed and tested
for an underactuated course unstable feeder vessel. In order to do
this, an available high fidelity model is simplified such that it could
be used for control design. A smooth trajectory that brings the vessel
from the current position and orientation close to the dock could be
tracked with the controller. As the controller is designed as a cascade
controller, intermediate signals have a clear interpretation.

The speed and course were independently controlled, although
the speed was a parameter in the course keeping controller. There
were deviations between the sailed track and the required track, even
though a feed forward controller was used based on identified coef-
ficients. This indicates that the control model is not perfect, and a
feedback controller is not only needed to stabilise the course unstable
system, but also to counter modelling inaccuracies.

At the end of the manoeuvre, at very low speeds, the ship is dif-
ficult to handle without bow thrusters. This is acceptable, as the
bow thrusters are be effective in that speed range, and a dynamic
positioning controller can bring the vessel slowly to the dock.

In the current work we have presented a linear controller that
can bring the vessel close to a pose with near zero velocity. Future
work needs to investigate realistic disturbances due to the quay and
shallow water effects on the performance. A control design that can
inherently cope with these disturbances, uncertainty and coupling
between the degrees of freedom might be necessary. Furthermore, a
full docking manoeuvre will be tested in our basins in the near future.
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Appendices
Appendix 1. Bézier curve

The target position is based on a cubic Bezier curve (Kamermans 2022):

) = (1 = h)’py +3(1 — h)’hp, +3(1 — hlp, + Wps.

With 0 < h < 1 the path variable. The variables used are shown in Figure A1 with
Pr = [pex pry] T and p; = [pi, piy]T. When we set i = 0 then this function eval-
uates to p,(0) = p,, and at h = 1 we get p.(1) = p5. The derivative with respect
to h is calculated as:

(A1)

%(h) =301 =P, — po) + 6(1 — Wh(p, — p)) + 317 (p; —py).  (A2)
Ath = 0and h = 1 this evaluates to %(0) =3(p, — py) and %(1) =3(p; —
P»). So, the tangent at the start and the end are given by the vector to the adja-
cent control point. The path variable needs to become time-dependent to convert
the path to a time-dependent trajectory. The target surge speed can then be
calculated as:

dpex ) dpiy\2  dh [ [ dpex ) dpry\?
f) = . = — . . A3
() \/(dt)+<dt> dt(dh)+(dh> (43)
Note that the surge velocity is defined to be positive. Evaluating the target surge
speedath = 0 and h = 1 results in

dho) Ak
o T

As we want to end at zero speed, uf = 0 and we want to have /¢ finite, we need
dh(1)
T

uyg = 310 (A4)

= 0. The polynomial h(t) = t/T(2 — t/T), among many others, achieves
this. T is the duration of travelling the trajectory. The derivative at t = 0 evaluates

% = 2/T. This can be related to the initial velocity:

610 tuo tuo
= — h=—1(2——).
=T T ( 610>

to

(A5)

Po lo P1

Figure A1. The principle variables of a cubic Bezier curve. p; are the control points,
and 0 < h < 1is the path variable.
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Appendix 2. Setpoint derivatives

The time derivatives of the Bézier curve are found by using the chain rule:

dp, dpdh
== =—— A6
“"Sa T anar (46)
dve d’p,  dp (dn\*  dpdh (A7)
dt — der T dk? \ dt dh dr?

These derivatives contain the earth-fixed x- and y-component. The derivative of
the setpoint surge speed to the vehicle controller, (7), is:

d d
d“sp Vsp.x @i Vspx + Vepy a Vspy
= >

(A8)

dt Usp

vsp = [vsps sz]T is known from (6). The components of the acceleration are a
summation of the target acceleration and acceleration to bring the vessel to the
target:
D _ dve | dva (A9)
dt dt dt
The first term on the right hand side follows from (A7). The second term is
calculated as:

dve _dy p d( P )
—_ = — — =), (A10)
ar ~ arqipn 7 a \Tipl
d A2(PiVy + Pyivy)
d_}; = Umaxpxx—épyy> (AH)
o I o
(p"p+22)" Vi'p
d/p _ (=Pxx — PyVy) Px Vx
@ (nﬁn)f P Y = (A1)
(p p) PP
$( ) o CRbE, b )
~T~\ 2 ~T~
P/ (pTP>2 »'p

in which ¥, is the difference in the velocity between the target and the ship in
the earth fixed x-coordinate. The same holds for the y-component. The time
derivative of the course setpoint (7) is calculated as:

d d
dxsp _ YpxgiVspy — VspydrVspx (A14)
dt u3,

Again, the velocity setpoint follows from (6). It's derivative is the addition of
(A7) and 92 (A10)-(A13).



