

Introduction: H2020 Project MOSES

Nikolaos P. Ventikos

MIKOIAOS P. VEITLIKOS

Associate Professor
School of Naval Architecture & Marine Engineering
National Technical University of Athens

On Thursday 28th of September 09:30 – 15:00 MOSES and AEGIS demonstrate the Robotic Container Handling System

A system developed by MacGregor, TNO and Bromma.

You are very welcome to join the demonstration at TNO in Soesterberg, The Netherlands; MacGregor in Örnsköldsvik, Sweden; or online.

Facts about the MOSES project

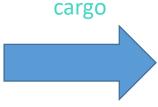
E SOLL JAL AVERT

Duration: 01.07.2020 - 30.06.2023
 (36 months) - extension
 31.12.2023 (42 months)

o Budget: 8 million €

Consortium: 17 Partners

Coordinator: NTUA



MOSES aims to...

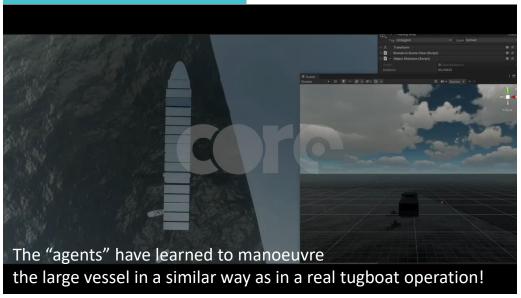
Containerised cargo

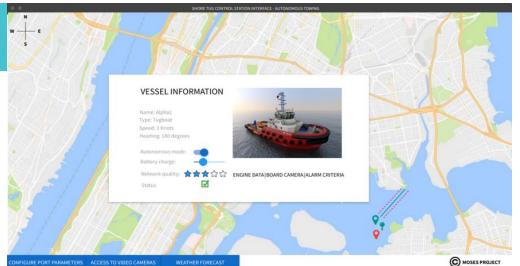
Create sustainable feeder services from large container terminals to small ports with no infrastructure to replace trucks on Ro-Ro ships

The MOSES concept

The MOSES Use Cases Northern Case France Romania Bosnia and Herzegovina Serbia Варна **Western MED-Spain** Bulgaria Decongest truck transport traffic in Valencia port and connect it to **Eastern MED-Greece** Sagunto and Gandia satellite ports Decongest Piraeus container terminal and integrate small Greek ports into the container supply chain

Tunisia


Malta



MOSES AutoDock System

Autonomous tugboats

Shore Tugboat Control Station

Automated Mooring

Prototype innovations:

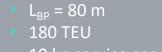
- Small-scale
- Surge motion control
- Energy harvesting
- Communication with tugboats

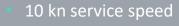
MOSES AutoDock System – Demonstration

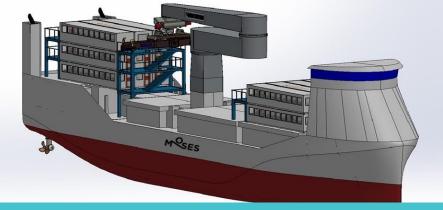
3rd week of October 2023

Showcase the automated maneuvering, docking, and mooring scheme for large ports

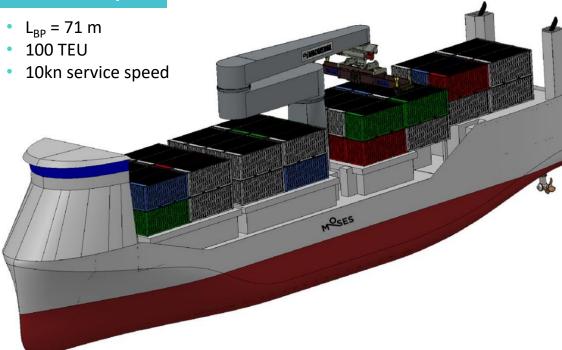
- Two workboats will simulate a swarm of autonomous tugboats
- They will guide a floating vessel towards a berthing spot
- The re-engineered AutoMoor prototype will safely moor and secure the floating vessel at berth
- Faaborg, Denmark





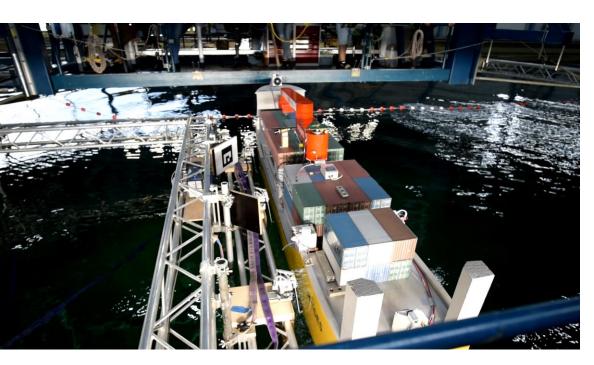

MOSES Innovative Feeder

Greek concept I



Modular concept design for pax transport

Innovations:


- Sustainable propulsion (Hybrid methanol ICE + batteries, Full electric)
- Azimuth thrusters for enhanced manoeuvrability
- Automated cargo-handling, as first step towards higher autonomy

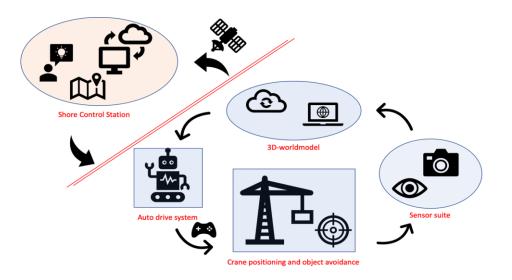
MOSES Innovative Feeder Vessel – Demonstration

Free sailing, **1:17 scale ship model** of Greek II concept design

Round-trip between two ports, including autonomous docking and undocking

September 14, 2023

- Demonstrate **port-to-port autonomous operation** of the MOSES Innovative Feeder vessel in a Seakeeping and Manoeuvring Basin (SMB)
- Wageningen, the Netherlands


MOSES Robotic Cargo Handling System

Automated Crane

- Compensation of pendulation (ship motions, weather conditions)
- Identification of container to load

Intelligent Operator Support System (IOSS)

- Enabling local situation awareness anomaly detection
- Robot self awareness in problem detection
- Control Intelligence
- Dynamic task allocation (One-to-many)
- Risk assessment for problem solving

MOSES Robotic Cargo Handling System – Demonstration

Today's pilot demonstration

Demonstrate the **automated operation for (un)loading containers** from the MOSES Innovative Feeder with the Robotic Container-Handling System

- A full-scale crane (located at MacGregor's test site) will be outfitted with a sensor package and control systems to enable remotely controlled and autonomous operation
- A remote operator (*located at TNO's facilities*) will monitor the operation through the **Intelligent Operator Support** System (IOSS)

Örnsköldsvik, Sweden and Soesterberg, the Netherlands

Pilot Demonstration results

- The pilot demonstration results will provide input to the sustainability framework developed by MOSES
- The objective is to evaluate the sustainability and added value to SSS of the MOSES Innovations, based on specific criteria (incl. cost, environment, safety etc.)

Fill cyan cells & # Experts 4 # Alternative 2 # 8								_		MUL	ΓΙ-Α	TTRIB	JTE	MULT	TI-ASSES	SS ORDE	R PREFER	RENCE	x1	x2	x3						
Attribu		button		"	E1	10	E2		20		butes 3	30		E4	DAN 40	IAO.	S SOL	VER DrC Sofia Ar				Takis Var Veighted		3 0,056			0 Fuzzy
Code	Description		Туре	BAU	MOSES		BAU	MOSES		BAU	MOSES		BAU	MOSES	S E		E2 l							0,120	0,88	***************************************	Crisp
		_		900	500		900	500		900	500		900	500		1	9	9	9	0,381	-0,333	-0,185	-0,090	Give yo	our choice	to find weig	hts of
A1	COST	0	cost													5	10	5		0.381	-0.204	-0,243	-0,090	1		2	3
42	ENVIRONMENT	LS	Benefit	VL	VH		VL	М		VL	М		VL	VH		1	1		enter weight o attribute as nu		0,067 0,052	experts		attributes			
A2	ENVIRONMENT															7	10		linguistic		iliber of	0,067	0,051			ARE	
A3	SAFETY	LS	Benefit	VL	VH		VL	L		VL	М		VL	VH		1	1			line ent		0,066	0,034		No.		
AS	DATEIT															6	10	1 kı	owle	dge lev	el for the	0,066	0,037				
A4	COMPLIANCE	LS	Benefit	L	Н		VL	М		VL	М		L	Н		1	1	1	1	0,039	0,021	0,032	0,026	Fuz	zv weight	ed sum o	der
A4																10	7	4	1	0,039	0,021	0,033	0,024			cu sum o	
A5	REGULATION	LS	cost	L	М		VL	М		L	L		М	L		1	1	1	1	0,097	-0,080	-0,056	-0,085	4,	00		
A3																10	10	10	10	0,097	-0,073	-0,064	-0,083	2,	00	_	
A6	HEALTH	LS	cost	М	M		VL	М		VL	М		L	М		4	4	4	4	0,206	-0,142	-0,150	-0,174	.₫ 0,	₾ 0,00		
																10	7	3	5	0,206	-0,146	-0,146	-0,171	.c. criteria .2,	00		
A7	SOCIAL VALUE	LS	cost	М	VH		Н	М		Н	М		VH	М		1	1	1	1	0,070	-0,047	-0,052	-0,015	_	-4.00		
																10	9	8	5	0,070	-0,044	-0,055	-0,016	-4,	00		
A8	BUSINESS VALUE	LS	Benefit	М	VH		VL	М		L	М		VH	Н		1	1	1	1	0,061	0,044	0,042	0,042	-6,	00	Oprions	
70			Denejie													10	8	7	4	0,061	0,038		0,041			Орнона	
								ļ					Mi	crosoft Ex	ccel				×		-0,479	-0,235	-0,211				
																					-0,442	-0,293	-0,206				
											an	and the winner is X2 And the FUZZY winner is x2															
																	OK										

MOSES making waves...

MOSES was **awarded** by the Institute of Logistics Management of Greece (ILME) with the Logistics Excellence Award "**Alexander the Great – Project of the Year 2022**"

One more thing...an interesting event

www. moses-h2020.eu

MOSES project2020

@mosesproject20

MOSES Project

Thank you for your attention!

If you have any questions or require further information, please contact me:

Nikolaos P. Ventikos (niven@deslab.ntua.gr)

National and Technical University of Athens - NTUA

