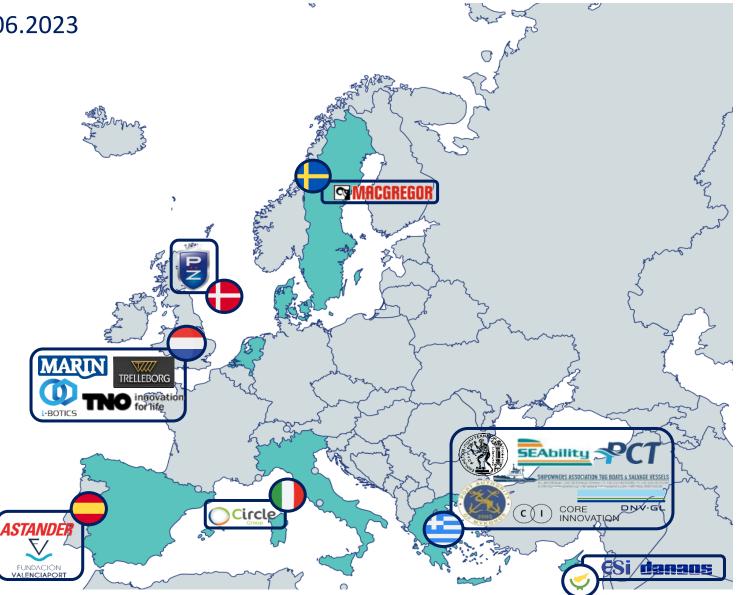


Introduction: H2020 Project MOSES

Nikolaos P. Ventikos

Associate Professor School of Naval Architecture & Marine Engineering National Technical University of Athens


This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement No. 861678.

September 14, 2023

Facts about the MOSES project

- Duration: 01.07.2020 30.06.2023
 (36 months) extension
 31.12.2023 (42 months)
- o Budget: 8 million €
- **Consortium:** 17 Partners
- Coordinator: NTUA

MOSES aims to...

Create sustainable feeder services from large container terminals to small ports with no infrastructure to replace trucks on Ro-Ro ships

Is modal shift relevant?

Trucks are becoming electrically-driven!

But there will still be problems, such as congestion...

Illustration of ASKO's zero emission shuttle Source: ASKO Maritime

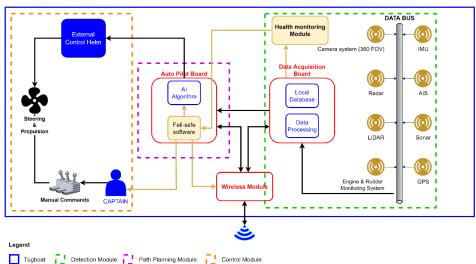
MV Yara Birkeland Source: Yara International

Modal shift to maritime transport will be meaningful if we start to **think differently**...

The MOSES concept

MSES

"Eastern MED-Greece" use case


For achieving **-3.5% cost / cargo unit** compared to the Ro-Ro transport chain, the feeder must call on each port **at least twice a week** and capture **at least 40% of the estimated demand**.

MOSES AutoDock System

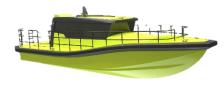
Architecture

Artificial Intelligence

Automated Mooring

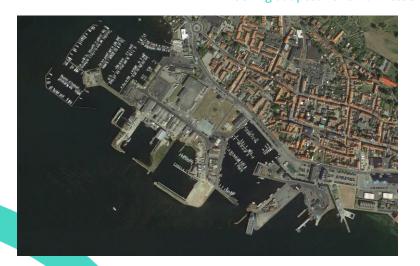
Prototype innovations:

- Small-scale
- Surge motion control
- Energy harvesting
- Communication with tugboats


MSES

The "agents" have learned to manoeuvre the large vessel in a similar way as in a real tugboat operation!

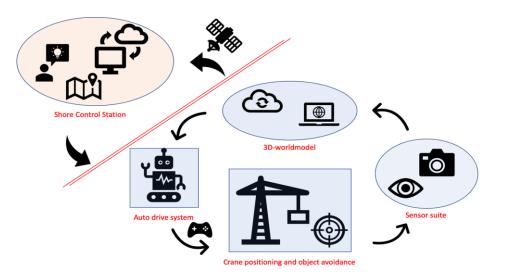
MOSES AutoDock System – Demonstration



TUCO Pro:Zero Workboats

3rd week of October 2023

- Showcase the automated maneuvering, docking, and mooring scheme for large ports
 - Two workboats will simulate a swarm of autonomous tugboats
 - They will guide a floating vessel towards a berthing spot
 - The re-engineered AutoMoor prototype will safely moor and secure the floating vessel at berth


MOSES Robotic Cargo Handling System

Automated Crane

- Compensation of pendulation (ship motions, weather conditions)
- Identification of container to load

Intelligent Operator Support System (IOSS)

 Enabling local situation awareness – anomaly detection

> innovation for life

MACGREGOR

- Robot self awareness in problem detection
- Control Intelligence
- Dynamic task allocation (One-to-many)
- Risk assessment for problem solving

MOSES Robotic Cargo Handling System – Demonstration

September 28, 2023

Demonstrate the automated operation for (un)loading containers from the MOSES Innovative Feeder with the Robotic Container-Handling System

- A full-scale crane (located at MacGregor's test site) will be outfitted with a sensor package and control systems to enable remotely controlled and autonomous operation
- A remote operator (*located at TNO's facilities*) will monitor the operation through the **Intelligent** Operator Support System (IOSS)

Sweden and the Netherlands

MOSES Innovative Feeder Vessel – Demonstration

Today's pilot demonstration

Demonstrate **port-to-port autonomous** operation of the MOSES Innovative Feeder vessel in a Seakeeping and Manoeuvring Basin (SMB)

Free sailing, 1:17 scale ship model of Greek II **concept design**

Round-trip between two ports, including undocking and undocking and undocking ⊲

Innovative Container Feeders

Yara Birkeland

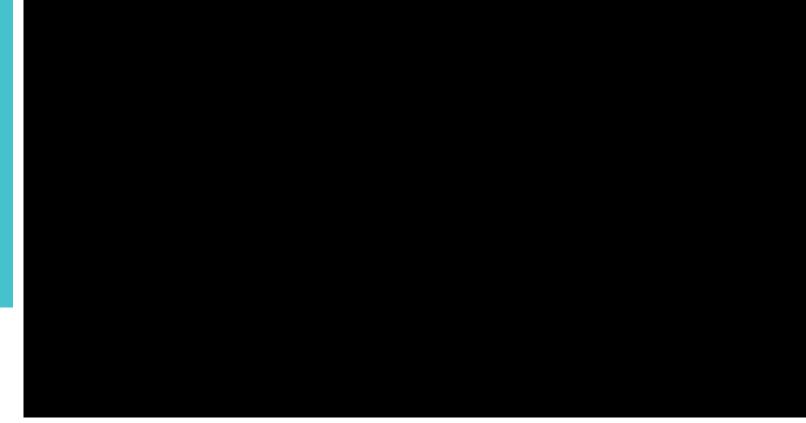
Innovative feeders must be:

- Environmentally friendly
- Cost-effective for carrying relatively small amounts of cargo
- Able to approach relatively small ports

Vessels that carry up to 300 containers and are operating with zero emissions (batteries, hydrogen fuel cells) are already being developed!

Samskip Seashuttle

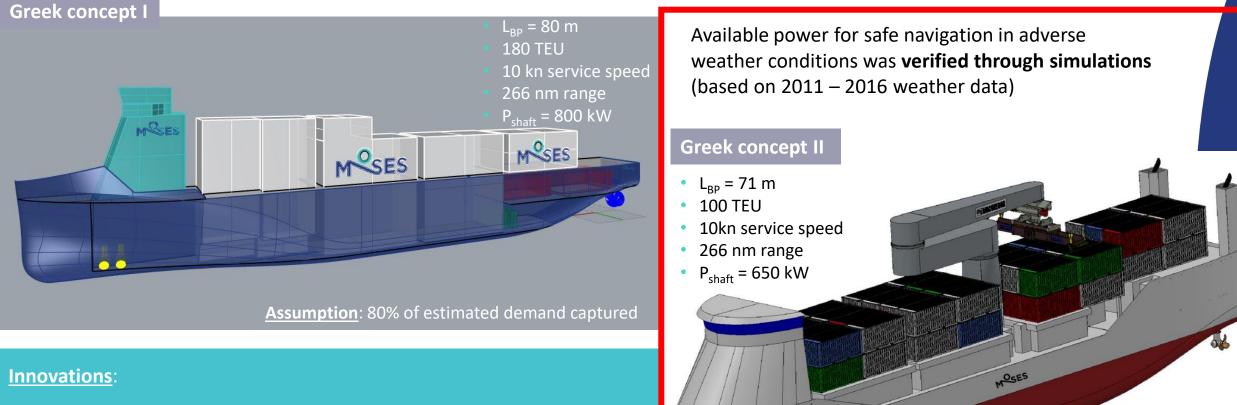
ASKO


Added value of the MOSES Innovative Feeder

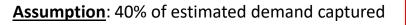
MARIN

• Does not depend on:

- port infrastructure (geared, (un)load directly from/to trucks)
- the availability of port services (stevedoring, tug assistance)
- Environmentally sustainable propulsion

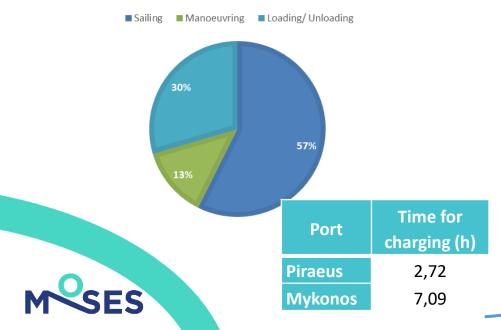


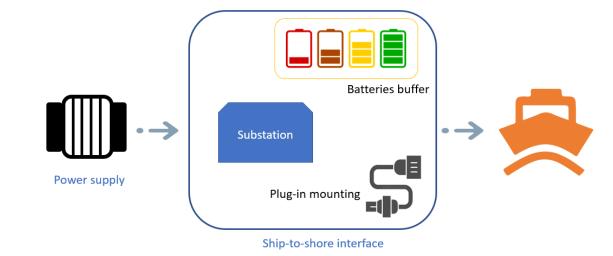
Simulation of fully automated vessel control at the port of Mykonos



The feeder's technical characteristics

- Sustainable propulsion (Hybrid methanol ICE + batteries, Full electric)
- Azimuth thrusters for enhanced manoeuvrability
- Automated cargo-handling, as first step towards higher autonomy


MOSES Recharging Station – Feasibility study



Criteria:

- Recharging should not disrupt operation
- The grid should provide the required power
- Port real-estate needs to be available for the station

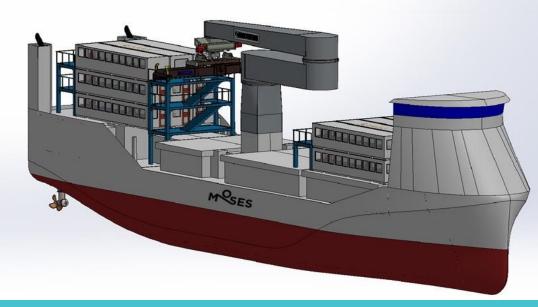
Feeder operational profile:

Preliminary Scenario:

- Feeder recharges at Piraeus and Mykonos to avoid draining the batteries below 20%
 - Need to install batteries buffer at Mykonos port to allow constant supply without the risk of port black-out
 - Recharging at Mykonos <u>does not seem promising</u> given the current state of the grid and the recharging technology

Feasibility study result: Feeder recharges only at Piraeus

The innovative feeder's additional functionality



- A *feasibility study* was conducted to identify if waiting time could be exploited for other uses.
- **10 waiting hours per trip** (based on trip simulations) for pax transportation to nearby islands.

Modular concept design for pax transport

This feature will not be demonstrated

Pilot Demonstration results

- The pilot demonstration results will provide input to the *detailed sustainability framework* developed by MOSES
- The objective is to evaluate the *sustainability and added value to SSS of the MOSES Innovations,* based on specific criteria (incl. cost, environment, safety etc.)

MOSES making waves...

MOSES was **awarded** by the Institute of Logistics Management of Greece (ILME) with the Logistics Excellence Award "Alexander the Great – Project of the Year 2022"

One more thing...an interesting event

www. moses-h2020.eu

MSES

Thank you for your attention!

If you have any questions or require further information, please contact me:

Nikolaos P. Ventikos (niven@deslab.ntua.gr)

National and Technical University of Athens - NTUA

This project has received funding from the European Union's horizon 2020 research and innovation programme under grant agreement No. 861678.