

Simulation of a feeder on a port to port mission Ed van Daalen, Giorgio Iavicoli, Hans Cozijn, Bas de Kruif

MSES

EU MOSES project

MSES

autoMated vessels and supply chain Optimisation for sustainable short SEa Shipping

Autonomous sailing from port to port

full round trip Piraeus-Mykonos, autonomous ship container feeder with azimuthing & tunnel thrusters variable environment different operational states Divide and conquer: multiple submodels \rightarrow integration multiple phases \rightarrow transitions

calculations simulations experiments

Container feeder : external forces

- gravity forces
- hydrostatic forces
- manoeuvring forces
- wind forces
- wave excitation forces

Container feeder : actuators

2 azimuthing thrusters

simulation

scale model

2 bow tunnel thrusters

Surroundings : environment and ports

motion sensors wave probe

`pose relative to'

- : logging, navigation, evaluation of criteria
- : criteria
- : (un)docking

Control

Each phase has its own controller.

For example:

The `transit' phase has an autopilot controller, based on waypoints.

The `docking' phase uses PID controllers for surge, sway, yaw.

The required forces are handed over to the allocation.

÷.) (on	trollerSet	mgl::Reference
	<u>ا</u> ا		Properties {}	
		<u>)</u>	transitController	mgl::Reference
	E 🗄)	approachingController	mgl::Reference
	E E	<u>)</u>)	predockingController	mgl::Reference
)	dockingController	mgl::Reference
		3)	dockedController	mgl::Reference
	÷. 🗄)	undockingController	mgl::Reference

Allocation

MARIN

distribute required surge & sway forces and yaw moment over available actuators with minimal use of power

 \rightarrow constrained optimization problem

 $\min \sum_{i} P^{(i)} \quad \text{with}$ $\sum_{i} F_{x}^{(i)} = F_{x}^{(req)}, \sum_{i} F_{y}^{(i)} = F_{y}^{(req)}, \sum_{i} M_{z}^{(i)} = M_{z}^{(req)}$

under-actuated

- azimuthing thrusters only
- fully actuated
- azimuthing and tunnel thrusters

∃- 🛐 allocatorSet	mgl::Reference	
🕀 🖪 Properties {}		
🖻 📳 underactuatedAllocator	mgl::Reference	
🕀 📃 Properties {}		
🖻 🖻 adpDof3Allocation	adp::Dof3Allocation	
🕀 📃 Properties {}		
🕀 💑 AT_PS_Rep	adp::Thruster	
🕀 💑 AT_SB_Rep	adp::Thruster	
主 👎 🐖 underactuatedAllocator_supervise	or_supervisor_xpy::Node	
🗄 🗊 fullyactuatedAllocator	mgl::Reference	
🕀 🖻 Properties {}		
🛱 🕂 🔁 adpDof3Allocation	adp::Dof3Allocation	
Properties {}		
🕀 💑 AT_PS_Rep	adp::Thruster	
🖽 🚓 AT_SB_Rep	adp::Thruster	
🖽 🚓 TT_Aft_Rep	adp::TunnelThruster	
🖽 🚓 TT_Fore_Rep	adp::TunnelThruster	
🗄 🥐 fullyactuatedAllocator_supervisor	xpy::Node	

Simulation - idle

start up:

•

- no control
- no allocation
- port environment

Simulation - undocking

undocking:

•

- no control \rightarrow DP control
 - no actuators \rightarrow fully actuated
- pose to undock

Simulation - transit

transit:

•

- DP control \rightarrow autopilot
 - fully actuated \rightarrow under actuated
- pose \rightarrow waypoints
- harbour \rightarrow open water

Simulation - results

Results : shortened round trip

MARIN

propulsion power

Results : evaluation of criteria (examples)

phase	criterium	SPI*	result
transit	vertical acceleration @ containers	a _z < 7.83m/s ²	ОК
docked	heading error	$\Delta \psi$ < 2 deg	OK

* Specific Performance Indicator

Meses Marin

- divided operation and project phases to sail from port to port
- each task solved in 'calculation' phase
- all tasks combined in 'simulation' phase
- integral solution tested in 'experimental' phase
- smooth sailing in operation of ship and project

Acknowledgement: MOSES project has received funding from the European Union's Horizon 2020 research & innovation programme under grant agreement No. 861678. Content reflects only the authors' view and the Agency is not responsible for any use that may be made of the information it contains.

THANK YOU.

www.marin.nl₁₈

Experiments - validation

