The MOSES Project

Automated and autonomous technologies for modal shift to Short Sea Shipping

Nikolaos P. Ventikos
Associate Professor, NTUA

Konstantinos Louzis
PhD Candidate, Research Engineer, NTUA

21 March 2023
Facts about the MOSES project

- **Project Title:** AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping
- **Duration:** 01.07.2020 - 30.06.2023 (36 months) – to be extended
- **Budget:** 8 million €
- **Consortium:** 17 Partners
The EU container supply chain

Maritime transport is efficient and green, mainly due to economies of scale!

The EU aims at shifting cargo from land-based transportation to more environmentally friendly modes.

To increase the share of SSS in the container supply chain:
- Feeder routes must reach more destination ports.
- Feeder vessels must carry less cargo cost effectively.
MOSES ambition/main objective

Significantly **enhance the SSS component** of the European container supply chain!

- **5%** Minimum decrease of end-to-end costs for container transport with feeder services
- **15%** Increase of feeder traffic between large terminals and small ports
- **10%** Modal shift to Short Sea Shipping in designated areas
MOSES Innovations:
1. MOSES AutoDock (MOSES Autonomous tugboats + AutoMoor)
2. MOSES Recharging Station
3. Innovative Feeder Vessel
4. Robotic container-handling system
5. MOSES matchmaking platform
Objective:
Decongest truck transport traffic in Valencia port and connect two Sagunto and Gandia satellite ports

- The feeder would be competitive to existing cargo transport options if **40% of the maximum estimated demand** is captured.
- Feeder service with a frequency of **three weekly services**, with geared ships.
- The expected cost-effective capacity of the vessel is **600-700 TEUs**.
“Eastern MED-Greece” use case

Objective:
Decongest Piraeus container terminal and integrate small Greek ports into the container supply chain

- The feeder would be competitive to existing cargo transport options if 80% of the maximum estimated demand is captured.
- At least two weekly services in each port.
- The expected cost-effective capacity of the vessel is 300-400 TEUs.

The 7 island ports represent 87% of the total general cargo traffic (based on 2019 data)
Autonomous tugboats | State of the art

- RECOTUG (remote control test)
- Robert Allan RAMORA (remotely controlled concept)
- IntelliTug (decision support, autonomous nav. test)
- POSH Harvest (autonomous nav. test)
- Seamachines Nellie Bly (autonomous nav. test)
- Kotug (autonomous nav. test)
AutoDock | Design and MOSES scope

- Architecture
- Artificial Intelligence for autonomous manoeuvring
- Requirements for fail-safe operation

Feasibility study with the assumption the autonomous tugboats are electric (battery or hybrid)

Adapted AutoMoor prototype

- Functional design
- Requirements for information exchanges - human interface

AutoDock | Design and MOSES scope
AutoDock | Autonomous Tugboat Swarm

Architecture

Artificial Intelligence

The “agents” have learned to manoeuvre the large vessel in a similar way as in a real tugboat operation!
AutoDock | Automated Mooring System

Prototype innovations:
- Small-scale
- Surge motion control
- Energy harvesting
- Communication with tugboats
AutoDock | Shore Tugboat Control Station

Monitoring of autonomous towing with transfer of a tug control in the event of an alarm

- STCS
- Meteorologic Service
- VTS
- Tagboat Swarm

Monitoring and alarm generation schemes:
- Weather data
- Maritime traffic data
- Tag sensor data

Alarm on tug X: Give control to the captain
AutoDock | Pilot Demonstration

Candidate locations at Faaborg port
Innovative Feeder | Design and MOSES scope

- Concept design for use cases and green operation, cost analyses
- Safety related to innovative features
- Demonstration of port-to-port autonomous operation through simulation (model integration problem)

Intelligent Operator Support System (IOSS) for autonomous cargo handling operations

- Sensor suite for 3D world model
- Hardware for crane control
Innovative Feeder | Concept designs

Spanish concept
- 670 TEU
- 5kn service speed
- 85 nm range

Greek concept I, II
- 180 TEU
- 10 kn service speed
- 266 nm range

Innovations:
- Sustainable propulsion (Hybrid methanol ICE + batteries, Full electric)
- Azimuth thrusters for enhanced manoeuvrability
- Automated cargo-handling, as first step towards higher autonomy
9 High risk events / system component

Cargo space:
- Onboard crane impedes port cranes → Slower cargo handling
- Water accumulation in cargo hold (open top design) → Stability degradation, damage to cargo

Accommodation:
- Mustering process takes too long
- Limited visual monitoring of the cargo space → Fire, cargo shift/loss not detected

Fuel/Energy storage:
- Methanol leakage
- Batteries overheating

Engine/Propulsion machinery:
- Hybrid configuration operation & maintenance
- Generator fails due to load variations in extreme weather
- Design speed too specific

* Hazards apply for all three concept designs
The objective is to demonstrate a fully autonomous round-trip by combining different vessel control models!

The simulation showcases fully automated vessel control from the port of Mykonos to the container terminal in Piraeus!

- Different models are used for:
 - way-point/track following,
 - Dynamic Positioning (DP) while manoeuvring,
 - docking
- A state machine is used for changing between mission phases
Intelligent Operator Support System (IOSS):
It uses AI to solve issues caused by another AI!

Remote supervisory control
- Enabling local situation awareness
- Robot self awareness in problem detection
- Control Intelligence
- Dynamic task allocation (One-to-many)
- Risk assessment for problem solving

Human-robot collaboration
- 3D world representation
- Anomaly detection
MOSES experience and key take-aways

• Competitiveness depends on the container transport demand captured by the feeder
• The hybrid power solution is estimated to have 10% lower operating costs compared to battery electric

• Reinforcement learning produces tugboat movements similar to manually operated tugboats
• Knowing the tugboat position accurately (< 1m) and comm. with automated mooring are crucial factors
• Human-in-the-loop seems to be the way for safety critical operations
NAIADIES III Impact Map

shifting freight to water
- Innovative feeder designed to be competitive to RoRo chain and independent from small port infrastructure (cargo, mooring)
- Matchmaking platform optimises SSS alternative for stakeholders

more attractive jobs
- Intelligent Operator Support System (IOSS) enabling safe and cost-effective (1-many) remote crane operations

pathway to zero emission fleet
- Innovative Feeder designed for zero-emissions operation
- Required infrastructure for recharging fully electric tugboats

smart waterways
- Autonomous port-to-port operation of Innovative Feeder
- Fully automated tugboat operation (manoeuvring)
Thank you for your attention!

Konstantinos Louzis, NTUA
klouzis@mail.ntua.gr

This project has received funding from the European Union’s horizon 2020 research and innovation programme under grant agreement No. 861678.