Intelligence for automated manoeuvres; docking of a feeder vessel

Bas J. de Kruif
Previous - ISAM waypoints tracking
Introduction - EU Moses project
Introduction - EU Moses project
Introduction

Aim:
• autonomously sail from quay to quay

Why:
• investigate the difficulties to better assist industry

Approach:
• split whole operation
• solve tasks
• stitch together
• simulate
Split operation
Split operation

- Approaching
- Docking
- Undocking
- Transit
- Transit
- Transit
Ship model

- two azimuthing pods
- two bow thrusters
- course unstable ship

manoeuvring model from CFD calculations → available in xSimulation

<table>
<thead>
<tr>
<th>Lpp</th>
<th>71.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>13.0 m</td>
</tr>
<tr>
<td>t</td>
<td>4.5 m</td>
</tr>
<tr>
<td>∇</td>
<td>2.8 (10^3) m(^3)</td>
</tr>
<tr>
<td>m</td>
<td>2.9 (10^6) kg</td>
</tr>
</tbody>
</table>
Approaching - GNC

Trajectory → Guidance → Control → Ship

- *required pose*
- *required heading speed*
- *actuators*
- *(estimated) pose*

Navigation
Solve as Optimal Control Problem:

• optimisation with ship dynamics as constraints
• constrain initial pose, actuator usage
• minimise time (and energy) usage

→ time-dependent trajectory results
Approaching - trajectory

Solve as Optimal Control Problem:
Approximating - Bézier approximation

Approximate with curve:
- fast calculation
- only for non-challenging situations
Approaching - Bézier approximation

Approximate with curve:

- fast calculation
- only for non-challenging situations
Approaching - guidance

Convert earth-fixed trajectory
→ to ship-fixed heading/speed

• Constant bearing
 • copies velocity vector of ‘target’
 • adds velocity vector to reach it
Approaching - guidance

Convert earth-fixed trajectory
→ to ship-fixed heading/speed

- Constant bearing
 - copies velocity vector of ‘target’
 - adds velocity vector to reach it
Approaching - GNC

- Trajectory
 - required pose

- Guidance
 - required heading speed

- Control
 - actuators
 - (estimated) pose

- Ship

- Navigation
Approaching - control

- Cascade control
 - inner loop: rate-of-turn
 - outer loop: course
- Stabilises unstable inner loop
- Counters fast disturbances in inner loop
Approaching - control

- **Cascade control - inner loop**
 - controls rudder to obtain rate-of-turn
 - feedforward → control what you know
 - feedback → counter disturbances / instability
Approaching - control

- Cascade control - inner loop
 - controls rudder to obtain rate-of-turn
 - feedforward → control what you know
 - feedback → counter disturbances / instability

Bech’s reverse spiral test

![Diagram of Bech's reverse spiral test](image_url)
Approaching - control

- Cascade control - outer loop
 - calculates required rate-of-turn to control course
• Cascade control - outer loop
 • calculates required rate-of-turn to control course
 • surge speed needed to control course
Approaching - control

- dotted: trajectory required
- blue: measurement no bow thrusters
- orange: measurements with bow thrusters
• logic to execute an operation
• connected to mission planning
• prone to explosion of states
Next steps

IAM research program 2023:

• talk to more captains to get better decomposition
• different approaches on mission execution
• improve control:
 • shallow water / quay effects / disturbances
 • wave disturbances
 • uncertainty
Next steps

• Extend use cases
 • Docking
 • Replenish operation
 • Launch and recovery
 • Platooning / swarming
Next steps

EU Moses project:
- simulation study on feasible conditions
- experiment in basin

Acknowledgement:

MOSES project has received funding from the European Union’s Horizon 2020 research & innovation programme under grant agreement No. 861678. Content reflects only the authors’ view and the Agency is not responsible for any use that may be made of the information it contains.