AutoMated Vessels and Supply Chain Optimisation for Sustainable Short Sea Shipping

Nikolaos P. Ventikos, NTUA
Presentation outline

The problem

Project facts

MOSES use cases

AI in MOSES

Pilot demos
The EU container supply chain

* the total container throughput in the Mediterranean increased from 20 m TEU (2000) to 51 m TEU (2015)
Maritime transport is efficient and green, mainly due to economies of scale!

The EU aims at shifting cargo from land-based transportation to more environmentally friendly modes.

To increase the share of SSS in the container supply chain:

- Feeder routes must reach more destination ports.
- Feeder vessels must carry less cargo cost effectively.
Facts about the MOSES project

- **Project Title:** AutoMated Vessels and Supply Chain Optimisation for Sustainable Short SEa Shipping
- **Duration:** 01.07.2020 - 30.06.2023 (36 months)
- **Budget:** 8 million €
- **Consortium:** 17 Partners
MOSES ambition

Significantly **enhance the SSS component** of the European container supply chain!

- **sustainable feeder services**

- **5%** Minimum decrease of end-to-end costs for container transport with feeder services
- **15%** Increase of feeder traffic between large terminals and small ports
- **10%** Modal shift to Short Sea Shipping in designated areas
MOSES ambition – What we want to change
“Western MED-Spain” use case

- Feeder service with a frequency of **three weekly services**, with geared ships.
- The expected cost-effective capacity of the vessel is **600-700 TEUs**.
“Eastern MED-Greece” use case

- The 7 island ports represent **87% of the total general cargo traffic** (based on 2019 data)
- The feeder would be competitive to existing cargo transport options if **80% of the maximum estimated demand** is captured
- The expected cost-effective capacity of the vessel is **300-400 TEUs**
- At least **two weekly services** in each port
The MOSES Concept
Autonomous Tugboats

Training AI to manoeuvre a large containership!

Virtual environment
• Unity 3D Game Engine
• Validated through real and simulated data
• Built-in training and inference
Autonomous Tugboats

Learning through reinforcement – reward and penalty!

Start of agent training

Trained agents

- Distance from docking position
- Maximum allowed speed
- LiDAR distance & approach angles
- etc...
Autonomous Tugboats

Learning in specific scenarios!

State at t=0

State on task accomplishment

the containership is parallel to the dock at a distance of 5 m
Innovative feeder with Robotic Cargo Handling

Innovative features
• Enhanced manoeuvrability (azimuth thrusters)
• Environmentally friendly (Hybrid, all electric, fuel cell)
• Automated cargo handling
• Autonomous navigation will be simulated
Innovative feeder with Robotic Cargo Handling

Intelligent Operator Support System (IOSS):
It uses AI to solve issues caused by another AI!

Remote supervisory control
- Enabling local situation awareness
- Robot self awareness in problem detection
- Control Intelligence
- Dynamic task allocation
- Risk assessment

Human-robot collaboration
- 3D world representation
- Anomaly detection
The platform will implement horizontal collaboration among logistics stakeholders and will match demand and supply of cargo volumes.

AI-based optimization of distribution routes and improvement of empty container management.
MOSES is going for its last year...

So, what’s next?
Pilot demonstration #1

Objective
Showcase the automated maneuvering, docking, and mooring scheme for large ports

Method
- Two workboats will simulate a swarm of autonomous tugboats
- They will guide a floating vessel towards a berthing spot
- The re-engineered AutoMoor prototype will safely moor and secure the floating vessel at berth

Location: Denmark
Pilot demonstration #2

Objective
Showcase the innovative characteristics of the MOSES feeder vessel by demonstrating its seakeeping and energy performance capabilities

Method
Free sailing scaled ship model of selected Feeder Vessel design
- Propulsion
- Seakeeping and added resistance
- Autonomous operation

Location: Netherlands
Pilot demonstration #3

Objective
Showcase the (semi)autonomous operation for (un)loading containers from the MOSES innovative feeder with the Robotic Container-Handling System

Method
- A full-scale crane will be outfitted with a sensor package to enable remotely controlled and autonomous operation
- The interaction between the MOSES Robotic Container-Handling System and the Innovative Feeder will be simulated

Location: Sweden and the Netherlands
Paving the way towards the future of Short Sea Shipping

- The problem addressed by MOSES does not have an obvious solution!
- It will strengthen the presence of SSS within the EU supply chain by taking advantage of the benefits of automated technologies.
Thank you for your attention!

This project has received funding from the European Union’s horizion 2020 research and innovation programme under grant agreement No. 861678.

Nikolaos P. Ventikos, NTUA
niven@deslab.ntua.gr