MOSES Project Overview

This project has received funding from the European Union’s horizon 2020 research and innovation programme under grant agreement No. 861678.
MOSES Facts

- **Project Title:** AutoMated Vessels and Supply Chain Optimisation for Sustainable Short Sea Shipping
- **Call identifier:** H2020-MG-2.6-2019
- **Topic:** “Moving freight by Water: Sustainable infrastructure and Innovative Vessels”
- **Duration:** 01.07.2020 - 30.06.2023 (36 months)
- **Funding scheme:** RIA – Research and Innovation Action
- **EU contribution:** EUR 8 122 150
- **Coordinated by:** National Technical University of Athens (NTUA), Greece

This project has received funding from the European Union’s horizon 2020 research and innovation programme under grant agreement No. 861678.
MOSES Consortium

17 Partners across Europe

Expertise in:
- Naval design
- Maritime Logistics
- Risk, Safety, Environmental Assessment
- Sustainability and Cost-benefit Analysis
- Autonomous System operation
- Port Infrastructure & operations
- Business Modelling
- Innovation Management
The aim of MOSES project is to **enhance the Short Sea Shipping (SSS) component** of the European supply chain by **addressing the vulnerabilities and strains** related to the operation of large containerships.

A two-fold strategy

SSS feeder services
- Ship design for sustainable services – no infrastructure required
- Logistics solution for balancing demand-supply

DSS ports efficiency
- Technological solutions for improving DSS ports inefficiencies – reduce berthing time, improve safety
MOSES Innovations:
1. MOSES AutoDock (MOSES Autonomous tugboats + AutoMoor)
2. MOSES Recharging Station
3. Innovative Feeder Vessel
4. Robotic container-handling system
5. MOSES matchmaking platform
MOSES Objectives

Technical
- Design innovative, hybrid electric feeder vessel outfitted with a robotic container-handling system
- Develop an automated manoeuvring and docking system for DSS ports
- Develop and promote a logistics matchmaking platform to boost SSS

Societal
- Reduce the environmental footprint for SSS and ports
- Improve efficiency and end-to-end delivery times of SSS mode
- Promote smart port development with minimal investment
- Develop concrete business cases

Market
- Improve efficiency and end-to-end delivery times of SSS mode
MOSES Business Cases (1/2)

BC #1 (Western MED-Spain)
Containers are trans-shipped from Valencia port using land-based transportation modalities

<table>
<thead>
<tr>
<th>Port</th>
<th>TEUs/year</th>
<th>Pax/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valencia</td>
<td>4.5 m</td>
<td>950 k</td>
</tr>
<tr>
<td>Sagunto</td>
<td>48.5 k</td>
<td>50</td>
</tr>
<tr>
<td>Gandia</td>
<td>7</td>
<td>35 k</td>
</tr>
</tbody>
</table>

BC #2 (Eastern MED-Greece)
Cargo from Piraeus to the Aegean islands is picked up by truck, delivered to warehouses and then loaded on another truck that off-loads it on RoRo ferries that serve the islands from Attica ports

<table>
<thead>
<tr>
<th>Port</th>
<th>TEUs/year</th>
<th>Pax/year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piraeus Container Terminal</td>
<td>4.5 m</td>
<td>-</td>
</tr>
<tr>
<td>Mykonos</td>
<td>20 k</td>
<td>1.2 m</td>
</tr>
</tbody>
</table>
MOSES Business Cases (2/2)

MOSES Transferability Business Case for North Europe

Open call and dedicated reserved budget in the first project year.

State of the art criteria
- Underperforming SSS route for **domestic traffic competing with other modes**
- TEN-T corridor (besides MED, Orient/East-MED)
MOSES Pilot Demonstrations

Pilot 1: AutoDock

SCOPE: Intelligent cooperation of autonomous tugboat swarm to manoeuvre a large containership and dock it by collaborating with an automated mooring system.

METHOD: 2x TUCO’s Pro:Zero workboats will be equipped with MOSES autonomy package. The workboats will cooperate to maneuver a floating vessel to the dock. TRELLEBORG will fabricate and install on the dock a 1-off small-scale automated mooring unit prototype, outfitted with MOSES intelligence to collaborate with the workboats.

Faaborg harbour, Denmark (TUCO’s facilities)

Pilot 2: Feeder

SCOPE: Seakeeping and energy performance. Capability to be used for automated mooring.

METHOD: A scaled ship model will be fabricated for 1 vessel design (out of the 3 evaluated in MOSES) and tested in seakeeping and manoeuvring basins.

MARIN’s Seakeeping and Manoeuvring Basin (SMB), Netherlands

Pilot 3: Robotic CHS

SCOPE: Autonomous container handling capability and shared control between human operator and system.

METHOD: A full-scale, operational MacGregor GLE Crane, outfitted with sensor package, will be controlled by an operator at the MOSES Shore Control Station (SCS) to handle a container. The demo will be implemented with the SCS onsite and at a remote location.

MacGregor test facility, Örnsköldsvik, Sweden
MOSES upcoming outcomes

conceptual designs for the innovative feeder vessel / robotic system and a **roadmap** to fully autonomous operation, designed on concrete business cases.

beta version of a matchmaking logistics platform.

working architecture and interface for Autonomous Tugboat Swarms that cooperate with a **prototype** of an Automated Mooring system.

a concept design of a recharging station for automated vessels.

Technologies that will enhance the role of SSS and small ports.

Pilot Demos

viable exploitation paths
MOSES impact

- Decongestion of road and/or city infrastructure
- Reduction of CO₂ and air pollutant emissions of intra-European freight transport
- Enhancement of the performance of the CEF TEN-T network

Sustainability increase freight fed from intercontinental European ports using waterborne transport

- Modernization and increase of the reliability and competitiveness of Intra European Waterborne transport
- Demonstrate that the deployment of solutions can increase the quality of freight moved by SSS by at least 10% by 2039 compared to 2010 baseline data

Additional impact of MOSES project is on

- The creation of new business opportunities for industry and SMEs in the EU
- European policies for manufacturing and automation

- Safety of port processes
- Competitiveness of European ports and shipping companies
Thank you for your attention!

If you have any questions or require further information, please contact us:

Prof. Nikolaos P. Ventikos
National and Technical University of Athens-NTUA
National Technical University Campus
School of Naval Architecture and Marine Engineering, Office Γ.304
9, Iroon Politechniou Str.
GR-15773, Zografou Athens. GREECE
Tel: +30 2107723563
email: niven@deslab.ntua.gr, mosesproject20@gmail.com.